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Abstract
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and Uber drivers in New York City to analyze matching efficiency taking into
account network effects and supply competition. Drivers make dynamic spatial
search decisions across locations for passengers and the latter make static choice
decisions between taxi and Uber. Network effects exist if increased participa-
tion of one side impacts searches of the other side. Spatial allocation of matched
trips are affected by network effects. This paper finds existence of network effects.
Then, the estimates are used to analyze frictions as spatial mismatches between
drivers and passengers in three counterfactual scenarios: restricting supply of
Uber, improving traffic condition, and eliminating surge multiplier. The results
show that regulating Uber increases mismatches of taxis. Eliminating the surge
multiplier increases mismatches of Uber. Traffic improvement increases match-
ing efficiency. Most importantly, ignoring network effects will lead to incorrect
welfare conclusions.
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1 Introduction

Frictions play an important role in explaining the failure of market clearing. When

there exists information imperfections, coordination failure, and congestion, some po-

tential traders on one side of the market may not successfully contact potential traders

on the other side, leaving some buyers and sellers unable to trade. The early search

and matching literature use a reduced form matching function to capture effects of

frictions on equilibrium outcomes of bilateral trades1. In more recent literature, the

microfoundation of the matching function is studied. Lagos (2000) builds a model of

taxis’ spatial search for passengers and finds that even without information imper-

fections and a random search assumption, aggregate mismatches over locations arise

endogenously as outcomes of drivers’ optimal search decisions. Specifically, when one

location has relatively higher expected profit conditional on picking up a passenger,

taxis may overcrowd that location leaving another location undersupplied. Similar to

the idea in Lagos (2000), Buchholz (2022) empirically studies search frictions in the

taxi industry as a consequence of price regulation which creates heterogeneity among

locations and fails to coordinate demand and supply across locations. Both Lagos

(2000) and Buchholz (2022) emphasize the prices as a source of spatial mismatches

and mainly focus on the supply side of the matching process2.

This paper studies matching efficiency in the taxi industry by accounting for both

price and non-price factors. The non-price factors introduced in the model are network

effects and supply competition. The presence of network effects is due to interdepen-

dence between demand and supply decisions as function of the participation of the other

side. To be specific, drivers prefer locations, ceteris paribus, with higher demand and

passengers prefer ride option with higher supply due to higher matching probabilities

and lower waiting time. Therefore, each geographic location forms a two-sided market

with indirect network effects. Moreover, agents of the same side could also affect each

other through direct network effects such as congestion effect or informative effect3.

1Blanchard and Diamond (1989), Pissarides (1990), and Mortensen and Pissarides (1994) are
examples.

2Taxi industry is well known for existence of matching frictions such that some areas have excess
demand whereas some have excess supply. This industry is ideal for analyzing search and matching
frictions for several reasons. First, search decisions are made by decentralized individuals without
coordination. Second, the taxi market in many cities is highly regulated in fares and medallions.
Third, there is no preference heterogeneity among drivers and passengers.

3For the rest of this paper, I refer to indirect network effects as network effects without explicitly
stating and use location, firm and platform interchangeably.
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The relative magnitude of bilateral responses between demand and supply causes mis-

matches within a location leaving unmatched drivers or passengers. Furthermore, the

misallocation of drivers leaving some locations oversupplied and other locations under-

supplied leads to mismatches across locations. Thus, quantifying network effects and

understand how they affect matching efficiencies are very important.

Instead of modelling only taxi drivers’ search decisions as in Buchholz (2022) or

only Uber drivers as in Castillo (2022), I introduce competition between taxi and Uber.

They compete for passengers in each location by providing differentiated products with

different prices and qualities (i.e. waiting time, matching technology). The model dis-

tinguishes competitions from drivers within the same firm and those from the opponent.

These two competitions have different mechanisms. Within-firm competition may have

positive effect due to indirect network effects (or spillover effect). However, the cross-

firm competition not only negatively affect demand, which is further exaggerated via

network effects. By providing a differentiated product, it makes passengers travelling

different trips choose different firms and the distribution of passengers’ destinations

becomes firm specific. Thus, the conditional expected profit determined by the trip

route, is impacted by inside and outside firm competition. Since drivers endogenously

crowd locations with high profitability, competition would affect supply allocation and

matching efficiency. Understanding the effects of competition on matching friction is

important to evaluate regulatory policies on market structure.

The empirical model estimates demand and supply in this market using data on

trip records of taxis and Uber from the New York City Taxi and Limousine Com-

mission (TLC). This dataset provides detailed information on taxis’ trips including

pickup/dropoff locations and timestamps. Uber’s trips include only pickup zones and

timestamps4. The trip data is limited since it does not provide the number of poten-

tial passengers and drivers in the matching process. I use this data and the strategy

of Buchholz (2022) to estimate equilibrium demand and supply in a dynamic spatial

search model. I extend Buchholz’s strategy by nesting a discrete choice model in the

dynamic search to allow network effects and incorporating competition between taxi

and Uber. I apply a new identification strategy to estimate the model. Due to the

large number of drivers in this dynamic game, the concept of nonstationary oblivious

4The data used in this paper is from 2016. After 2017, TLC upgrade ridesharing data by including
dropoff information. Due to the restriction on matching trip data with my collected Uber surge
multiplier, this paper does not use updated TLC data.
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equilibrium is used to solve the equilibrium5. The estimation results show significant

network effects and the substitution between taxi and Uber is relatively strong given

the estimate of nested logit parameter being 0.38 (out of range (0,1)).

I simulate several counterfactuals to both study factors influencing matching ef-

ficiency and policy issues in the real world. Uber has been a disruptive force in the

taxi industry and impacted congestion in cities. This had led to restriction on Uber.

In the first counterfactual, I simulate a regulatory policy that restricts Uber’s supply

and analyze how this change of competition affects matching efficiency and taxi profits.

In the second counterfactual, I improve the traffic condition to study the magnitude

of traffic congestion’s effect on matching efficiency. Since traffic condition is not en-

dogenously modelled, this improvement could come from an exogenous infrastructure

improvement. In the last one, Uber’s surge multiplier is eliminated to study the effi-

ciency of flexible pricing. In each simulation, predicted market outcomes are compared

with and without network effects.

The counterfactuals show that after decreasing Uber’s supply by 30%, taxis’ de-

mand and pickups increase due to less competition. However, it only increases taxis’

pickups (profits) by 1,660 ($ 34,300) compared to a 7,004 ($ 119,320) loss for Uber in

a representative day shift. The cross-location mismatches of taxi and Uber increase by

5.81% and 36.97% respectively. After improving traffic conditions, matching efficiencies

increase for both firms. Supplies of both firms increase due to less travel time and taxi

demand increases due to network effects by 5.86%. Finally, after eliminating Uber’s

surge multiplier, Uber’s cross-location mismatches increase by 3,152 (170.38%) which

indicates the success of surge pricing. On the contrary, taxis’ mismatches decrease

by 2,573 (17.46%) resulting from increased price competition of Uber. Passengers are

worse off after the regulatory policy but better off in the last two scenarios. All simu-

lation outcomes indicate the importance of network effects on the policy conclusions.

The rest of this paper is organized as follows. Section 2 discusses literature in

detail. Section 3 presents a simplified model with calibration to show why the network

effects and competition matter for matching efficiency. Section 4 and 5 introduce

industry background and the data separately. Section 6 presents the empirical model.

Estimation strategy is discussed in section 7. The results and counterfactuals are in

5The concept is proposed by proposed by Weintraub, Benkard and Jeziorski (2008). The idea of
OE is that, instead of competing with each other, taxi and Uber drivers are atomistic and compete
against deterministic paths of distribution of other drivers in equilibrium.
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section 8 and 9. Section 10 concludes this paper.

2 Literature

This paper is built upon two streams of literature, network effects and search and

matching. This paper contributes to the network effects literature by modelling both

direct and indirect network effects. A direct network effect measures the externalities

of other agents from the same side of market. In this case, it is the impact of other

riders on the demand for rides. An indirect network effect measures the cross-side

externalities. In this case, it is the impact of the number of drivers on demand or

impact of the number of riders on supply. This interdependence between demand

and supply is reflected in the matching probability or waiting time. The theoretical

literature on network effects begins with Katz and Shapiro(1985) and is followed by

Farrell and Saloner (1986), Chou and Shy (1990), Church and Gandal (1992), Rochet

and Tirole(2003, 2006) and Amstrong (2006).

The empirical work on network effects begins with Gandal (1994), Saloner and

Shepard (1995) and has grown rapidly in recent years. Gandal, Kende, and Rob

(2000) develop a dynamic model of consumer’s adoption of CD player and software

entry to estimate the feedback in CD industry. Ohashi (2003) and Park (2004) study

network effects in the U.S. home VCR market. Nair, Chintagunta, and Dube(2004)

quantify the network effects in the PDA market. Clements and Ohashi (2005), Corts

and Lederman (2009) focus on network effects in the video game industry. Rysman

(2004) estimates the network effects in Yellow Pages market and how it is related

to market concentration and antitrust policy. Ackerberg and Gowrisankaran (2006)

estimate the importance of network effect in the ACH banking industry. Dubé, Hitsch,

and Chintagunta (2010) study network effects in video game market and its tipping

effects. Lee (2013) also studies game industry but focus on software exclusivity. Liu and

Luo (2022) studies network effects in smartphone industry and how it affects carriers’

dynamic penetration pricing strategy.

Most of these empirical works focus on the indirect network effect of a two-sided

platform and ignore the direct network effects, or they use network size of one side

to estimate joint effects of indirect network effect and direct network effect. Goolsbee

and Klenow (2002) is one paper focusing on only direct network effect in the diffusion

of home computers. Chu and Manchanda (2016) is one recent paper that estimates
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and distinguishes both direct and indirect network effects in e-commerce platform

(Alibaba). This paper contributes to the literature by quantifying both direct and

indirect network effects. I allow the sizes of agents from both sides of the market to

affect decisions of individuals on either side.

This paper also contributes to the search and matching literature by adding net-

work effects to the model. Early search and matching models use a reduced form

matching function to introduce frictions that prevent the market from clearing (Blan-

chard and Diamond(1989), Pissarides(1984), Mortensen and Pissarides (1999)). Mi-

crofoundations of the matching function are introduced, for example, as coordination

failures (Butters (1977) and Burdett, Shi and Wright (2001)). Lagos (2000) devel-

ops a spatial search model of taxis without imperfect information and random search

assumptions showing that frictions arise in the aggregate matching function endoge-

nously as the outcomes of drivers’ search decisions. Specifically, when prices are fixed

and one location is more lucrative than other locations, drivers will overcrowd that lo-

cation leaving other locations undersupplied. Coexistence of excess demand and excess

supply reflect frictions in the aggregate matching function. Buchholz (2022) extends

Lagos (2000) and builds an empirical model with non-stationary drivers’ dynamics and

price-sensitive demand. He shows that price regulation of NYC taxis leads to inefficient

matching because drivers making dynamic search decisions prefer searching locations

with high profitability. The fixed pricing structure for taxis prevents the market from

clearing on prices.

This paper follows the approach of Buchholz (2022) and extend his model in two

directions. First, the demand model is not only sensitive to prices, but also sensitive

to supply/demand to incorporate network effects. Frechette, Lizzeri and Salz (2016)

also includes supply in passenger’s demand function in the form of a simulated waiting

time, but they do not model drivers’ location choices. Second, I incorporate cross-firm

competition between taxi and Uber drivers for passengers. With these extensions, I

can study impacts of non-price factors on matching efficiency and simulate regulation

of Uber on social welfare. One similar work to my paper by Shapiro (2018) focuses

on Uber’s welfare contribution to the New York City, however, with less emphasis on

network effects. Leccese (2022) considers the two-sided market feature of ridesharing

industry, but focuses on price elasticity and tax pass-through. Castillo (2022) studies

matching frictions of Uber with emphasis on surge pricing and its welfare outcome.

He does not model taxi and Uber competition. The network effect feedback loop is
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not explicitly emphasized. Castillo et al. (2022) studies the matching friction due to

dispatch protocol of Uber, which is different to spatial matching friction that my paper

focuses on.

This paper also contributes to the empirical literature with dynamic oligopoly

models. When there are a large number of firms within the market, Weintraub

et al.(2007,2008) propose the concept of oblivious equilibrium (OE) to approximate

Markov-perfect equilibrium in order to avoid the curse of dimensionality. In oblivious

equilibrium, the firm is assumed to make the decision based only on its own state and

deterministic average industry state rather than states of other competitors. In this

paper, I assume drivers compete with the distribution of other drivers throughout the

day. Under the OE assumption, only the distribution path at equilibrium is calculated.

There are empirical papers using stationary OE (Xu(2008), Saeedi(2014)) and nonsta-

tionary OE (Qi(2013), Buchholz (2022)) to solve equilibrium of a model with a large

number of agents6.

3 A Simple Model with Calibration

This section develops a model of drivers searching for passengers among two islands

in one period as an exposition of the main ideas. The model is a simplified version

of Lagos (2000) but with drivers from both taxi and Uber, and provides insights on

the relevance of network effects and competition. I solve the equilibrium and use com-

parative statics to show the influences of network effects and competition on matching

efficiency especially for taxis. This simple model can be deemed as one slice of the

full empirical model which has a multi-period dynamic game between taxi and Uber

drivers. Two comparative statics are analyzed after calibrating the parameters in this

model. The first is how network effects influence matching efficiency by changing the

parameter of indirect network effect. The second is how competition affects matching

by changing the total number of Uber cars. These exercises help to understand the

mechanisms underlying the dynamic structural model of this paper.

6Finally, there are many works related to the taxi and ride-sharing industry. Early work studying
NYC taxi industry include Farber (2005, 2008) and Crawford and Meng (2011) which study taxy
drivers’ labor supply decisions. Frechette, Lizzeri and Salz (2016) study taxi drivers’ labor supply
decisions with matching frictions. In recent years, research on ride-sharing industry has grown. For
example, Chen et al.(2019) study flexible labor supply of Uber drivers and Chen and Sheldon (2015)
study surge pricing of Uber. Other work related to traffic conditions and government regulation is by
Kreindler (2018) which studies road congestion pricing policy in India.
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3.1 Model Environment

There are a fixed number of taxi and Uber drivers, denoted as Ny and Nx where y

stands for yellow taxis and x stands for Uber for the rest of this paper. Drivers are

searching for passengers among two isolated islands i = 1, 2. Passengers need rides if

and only if they travel across islands. Thus, the fare in each island of each firm is fixed

and denoted as pfi for f = y, x, i = 1, 2. The matching only happens in one period.

Both drivers and passengers are assumed to have perfect information when making

their decisions. Supply and demand of each firm-island combination is denoted as vfi

and ufi. The supply vfi aggregates all drivers of firm f choosing to search island i. For

demand, I use a linear aggregate demand function as a reduced form of the aggregation

of choices over passengers. The demand functions are:

uyi = αuyi + βvyi + θvxi + dyi,∀i = 1, 2

uxi = αuxi + βvxi + θvyi + dxi,∀i = 1, 2
(3.1)

where the parameter α and β account for direct and indirect network effects respec-

tively. In specific, α measures the impact of additional riders on the demand for rides

and β measures the impact of supply in the same market on demand. The parameter

θ measures substitution effect of competitor’s supply on demand7. The term dfi in the

equations represents firm-island specific shocks such as population size and an idiosyn-

cratic demand shock. Since price is fixed for each firm-island combination, it is fully

captured in dfi.

At the beginning of this period, each driver chooses which island to search for

passengers in order to maximize his expected profit. The optimization problem is:

i∗ = argmax
i

mfi

vfi
pfi (3.2)

where mfi is matches in island i of firm f and the ratio mfi/vfi is the matching

probability. I assume perfect matching within each island for now such that mfi =

min{ufi, vfi} for both taxi and Uber. In the full model, I allow matching frictions

within a location, especially for taxis. In (3.2) the demand elasticity of supply is not

parameterized for simplicity. Assume all passengers and drivers make simultaneous

7I use these equation as linear approximation for discrete choice model. Like the discrete choice
model, market share of a particular product depends on characteristics of other products. For com-
pleteness, one could add the term of opponent’s demand which will make the solution complex.
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decision and Nash equilibrium satisfies the conditions E1-E4:

m∗
f1

v∗f1
pf1 =

m∗
f2

v∗f2
pf2 ∀f = y, x (E1)

u∗
fi =

β

1− α
v∗fi +

D∗
fi

1− α
∀i = 1, 2, f = y, x (E2)

m∗
fi = min{u∗

fi, v
∗
fi} ∀i = 1, 2, f = y, x (E3)

Nf = v∗f1 + v∗f2 ∀f = y, x (E4)

where D∗
fi = θv−fi + dfi. Condition E1 means the expected profits of the two islands

are equal and drivers have no incentive to deviate. Condition E2 is obtained from the

demand function. E3 follows perfect matching assumption. Finally, E4 means the total

number of drivers is fixed at Nf . The equilibrium demands and supplies can be solved

from the conditions above.

Given the equilibrium supplies and demands, the mismatches across islands from

an aggregate perspective can be calculated as:

mismatch = min{Σiufi,Σivfi} − Σi min{ufi, vfi}

= min{Σimax{0, ufi − vfi}︸ ︷︷ ︸
aggregate excess demand

,Σi max{0, vfi − ufi}︸ ︷︷ ︸
aggregate excess supply

} (3.3)

The mismatch depends on the parameters of the model including α, β, θ, dfi and ex-

ogenous variables Nf , pfi. To illustrate the economic forces, I consider the equilibrium

with excess supply in island 1 and excess demand in island 2 for taxis. In other words,

focus on the equilibrium with mismatches for taxis and study how changing network

effects (β) and competition (Nx) affects equilibrium mismatches of taxis.

3.2 Network Effects Calibration

To study how network effects change matching efficiency of taxis, competition from

Uber is shut down by letting Nx = 0. Under condition E4, the equilibrium supplies of

Uber are v∗xi = 0. Though the demands for Uber may not be zeros, the equilibrium

demands for taxis are independent of Uber. Without loss of generality, we consider the
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equilibrium with excess supply in island 1 and excess demand in island 2 as an example

of mismatches. In such equilibrium, it requires py1 > py2 and the solutions satisfy:

v∗y1 =
py1
py2

u∗
y1 (supply in island 1)

u∗
y1 =

dy1

1− α− β
py1
py2

(demand in island 1)

v∗y2 = Ny − v∗y1 (supply in island 2)

u∗
y2 =

β

1− α
v∗y2 +

dy2
1− α

(demand in island 1)

As long as 1 − α − β
py1
py2

> 0 and Ny > v∗y1, there is excess supply in island 1. There

will be excess demand in island 2 as long as dy2 is large enough. To study the impact

of network effects, I calibrate the parameters and solve the equilibrium with various β.

The parameter values are py1 = 3, py2 = 2, Ny = 20, Nx = 0, dy1 = 10, dy2 = 100, α =

−3 and β ranges from 1.5 to 2.5.

Figure 1: Comparative Statics of Network Effects and Taxi Mismatches

The result is illustrated in figure 1. As the indirect network effect β increases,
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the demands for taxis increase in both islands. Increased demand in island 1 fur-

ther attracts more drivers choosing island 1 and more supply generates more demand.

Whether it ends up with a new equilibrium with more excess supply or less depends

on the relative elasticities. In this model, since demand and supply have a linear re-

lationship in equilibrium, increased demand will make more excess supply in island 1.

As for island 2, since the matching probability is already one, increased demand will

not attract more supply and on the contrary more drivers will choose island 1 than 2.

Whether excess demand in island 2 increases or decreases depends on whether the in-

crease of β dominates the decrease of supply vy2. In this calibration, a stronger network

effect will make the matching less efficient for taxis in terms of aggregate mismatches.

3.3 Competition Calibration

To analyze how competition affect the matching efficiency, I calibrate the parameters

with various Nx, because variation in Nx can simulate changes in regulatory policy

on Uber. One can also vary the parameter θ to study the competition effect. This

calibration still focuses on the particular equilibrium with mismatches for taxis, but

with excess supply for Uber in both islands. The reasons are twofold: 1, it simplifies

the discussion of matching efficiency by only considering one firm’s mismatches. 2, the

equilibrium is unique if both islands have excess supply of Uber drivers in comparison

to the case that both islands have excess demand for Uber. The equilibrium demands

and supplies satisfy:

v∗y1 =
py2
py1

u∗
y1 =

py2
py1

θv∗x1 + dy1
1− α− βpy1/py2

(3.4)

u∗
y2 =

β

1− α
v∗y2 +

θv∗x2 + dy2
1− α

(3.5)

v∗x1 =
θv∗y1 + dx1

θNy + dx1 + dx2
Nx (3.6)

v∗x2 =
θv∗y2 + dx2

θNy + dx1 + dx2
Nx (3.7)

To construct the equilibrium, set py1 > py2 and make dy2 large enough such that island

2 has excess demand for taxi. I set px1 = px2 such that they cancel out in condition

(E1) for simplicity. To obtain excess supply for Uber, I adjust the values of Nx to
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guarantee it. The parameter values are py1 = 3, py2 = 2, px1 = px2, Ny = 3, dy1 = dx1 =

dx2 = 10, dy2 = 100, α = −3, β = 2, θ = −2 and Nx ranges from 12 to 24. Figure 2

shows the results. As Nx increases, demand for taxis decreases in both islands due

to competition. Decreased demand for taxi in island 1 makes island 1 less profitable

for taxi drivers and therefore supply of taxi in island 1 decreases. More taxi drivers

choose to search island 2 and make the mismatches between islands smaller. In the

opposite, if the number of Uber drivers is controlled by government and Nx decreases,

the mismatches of taxi will increase as this particular calibration shows.

To summarize, the spatial search model illustrates the impacts of network effects

and competition on aggregate matching efficiency. These non-price factors are as im-

portant as prices to understanding matching outcomes and social welfare. Especially,

when evaluating policy outcomes, one could draw imprecise conclusion by ignoring

these effects. The next section introduces the background of NYC taxi industry which

will be used to empirically study matching efficiencies in a fully developed dynamic

version of the search model.

Figure 2: Comparative Statics of Competition and Taxi Mismatches
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4 Background on New York City Taxi and Rideshar-

ing Industry

In NYC, there are mainly two ways other than public transportation to get a ride,

taxi or for-hire vehicle(FHV). Taxis can only pick up street hails and FHV can only

take pre-arranged ride requests. These two markets are strictly separated under the

regulation of NYC government. Running a taxi requires a medallion. The total number

of medallions available is fixed by regulation at 13,587 in 2016. Medallion owners can

trade medallions through auction and the price has dropped due to rideshare service

in recent years. Along with yellow taxis, there are up to 18,000 boro taxis which were

introduced gradually to the city since 2013. Boro taxis follow similar operation and

pricing rules as yellow taxis except for some restrictions8. In this paper, I do not

model Boro taxis since their trips are far less than yellow taxis and most trips of the

city originate from Southern Manhattan. The taxi fare follows a fixed nonlinear pricing

structure and it rarely changes under regulation. Most trips charge either metered fare

(base price and price/mile) or flat fare (i.e. airport trip is $52). Taxi price is fixed in

the sense that it only depends on the origin-destination of the trip not on the demand

and supply levels. Most taxi drivers lease the vehicle from medallion owners. There

are two shifts in a day: day shift starting from 6 a.m. and night shift starting from 4

p.m. with one rush hour in each shift.

The FHV provides pre-arranged transportation. It has different classes of service:

livery, black car and luxury limousine of which black cars account for most of the trips.

Unlike taxis, there is no restriction on entry of FHV. Since the operation of Uber in

2011, the number of FHV has increased by more than 60 percent to 63,000 vehicles by

2016. In early 2016, the total number of Uber cars was more than 25,000, far bigger

than other ridesharing companies such as Lyft and Via9. Though Uber cars are mostly

registered as black cars which provide service through a mobile app, its drivers are not

dispatched from bases. Active Uber drivers search for passengers on the street. When

there is a ride request, Uber sends it to the drivers nearby. In practice, Uber drivers can

decline a request, but it is not observed in the data and it is not modelled. Unlike the

8Boro taxis can only pick up passengers in Northern Manhattan and Outer Boroughs. Moreover,
the boro taxis can only pick up passengers at the airport by prearrangement.

9In this paper, I only model Uber as competitor to taxis without Lyft. One reason is that Lyft
is not big enough during my sample period. Out of all black car trips, Uber accounts for 72.6% and
Lyft accounts for 11.6% in April 2016. The other reason is that trip records of Lyft are not good.
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fixed price of taxi, Uber uses surge pricing which charges a higher than normal price

when demand is higher than supply in an area. On the one hand, high price attracts

more drivers to increase supply, and on the other hand it excludes passengers with low

willingness-to-pay to decrease demand. Uber’s flexible price helps the market to clear

and improve cross-location matching efficiency. Finally, unlike taxi drivers’ fixed labor

supply in a shift, Uber drivers work more flexible hours during the day which makes it

difficult to tract real-time supply of Uber.

5 Data

The data used in this paper comes from three sources. The main data about taxis

and Uber comes from trip records provided by the New York City Taxi and Limousine

Commission (TLC). The taxis trip records include all trips completed by yellow taxis

since 2009 and by boro taxis since 2013. Each observed trip in the data includes pick-

up and drop-off timestamp, geographic location, trip distance and fare. Trip time can

be calculated from the gap between pick-up and drop-off time. One useful variable not

available in the trip records is vehicle’s identifier for each trip. This variable can help

to understand drivers’ search patterns by comparing drop-off location and next pick-up

location. Moreover, I cannot tell the real-time location of vacant taxis and therefore

the potential supply of drivers. Neither can I tell how many potential passengers who

want rides but fail to match with this data.

The TLC data also contains FHV trip records which include trips of Uber10. Due

to different ways of data collection, Uber’s trip records have less information than

taxis. First, it only provides zone area instead of geographic coordinates for each

trip11. Second, the zone and timestamp is only available for pickups but not dropoffs.

Uber refuses to submit drop-off information of trips because of privacy concerns. Since

I do not know the trip time and distance without observing dropoffs, I assume it takes

the same travel distance and time for Uber as taxi for the same trip. Under this

assumption, I can predict Uber’ trip fares with the next data source.

The second source of data that supplements Uber’s trip records is Uber’s surge

multiplier. Uber’s fare during a normal time is calculated based on base price, trip

10The trips of Uber can be identified by the base id affiliated with each trip. TLC provides separate
list for bases of black, livery and luxury cars and companies they are affiliated to.

11The taxi zones are not accurate as geographic locations which are areas defined by the TLC.
There are about 263 taxi zones in the NYC.
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distance and time. When Uber’s supply is less than demand, Uber applies surge pricing

which charges a higher price as the product of a surge multiplier and the normal price.

In order to predict Uber’s trip fare, I use Uber’s API to collect the real time surge

multiplier every 10 minutes at 79 selected location spots across the city during the

sample period. Each request returns the surge multiplier of the time-location which

can be matched with the trip data to construct the price of each Uber trip in the

sample.

The third dataset is subway riderships obtained from Metropolitan Transportation

Authority (MTA) of the city. This data is used to calculate the number of potential

travellers of a given location-time as a measure of market size. The ridership data

includes information on weekly aggregate entrances to each station of the NYC subway.

For a given station, the riderships are sorted by various types of MetroCards used by

customers such as day pass, student, and full fare. I only count travellers paying full

fare as potential passengers of taxi&Uber since they are more likely to have the same

travelling patterns as taxi&Uber passengers compared to routine metro commuters.

Thus, the market size of a location at a given time is defined as the sum of taxi and

Uber pickups and full fare metro riderships.

5.1 Sample Construction

In the empirical part of this paper, I model taxi&Uber drivers’ dynamic search decisions

and passengers’ demands across locations in NYC in a representative day shift (6 a.m.-

4 p.m.) of a weekday in April 2016. Thus, the model focuses on equilibrium evolution

of supplies, demands and matches over this representative time interval. There are

two reasons for doing this. First, in the data, pickups and dropoffs across locations

and times for the day shift follow similar pattern among weekdays. Solving a dynamic

game for every day is not only a computational burden but also a redundant exercise.

Second, the number of active Uber drivers is not observed in the data. Given the

flexible working hours of Uber drivers, the number of on-street Uber drivers is more

stable during a weekday than the night shift and weekend when part-time or occasional

drivers are more likely to enter12. In this paper, I need to assume at least the total

number of on-street vehicles in order to estimate the unobserved supply. For taxis, the

number of total taxi cars is fixed at 13,587 which is the number of medallions. For

12There are studies on labor supply by Chen et al.(2017) and Hall and Krueger (2016) for Uber and
by Farber(2008) and Frechette et al. (2016) for taxi
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Uber, I have to assume the total number of cars is also fixed, which is 3,000, for the

purposely picked day shift of weekday13.

Time and space for the representative shift is discretized in the following ways.

A time period is defined every 10 minutes and there are 60 periods in total. The city

is divided into 40 geographic locations as shown in figure 3. I define the area of each

location by joining taxi zones to make locations comparable in number of pickups. For

example, the area of locations in Queens and Brooklyn are large compared to those in

Manhattan because the pickups in outer boroughs are quite sparse. I exclude central

park from this map since pickups within it are on the boundaries and I assign those

pickups to locations nearby. The 40× 60 = 2400 location-period pairs are each defined

as a market. Within each market, passengers and drivers randomly meet only once

and successful matches become pickups in that market14.

One set of variables constructed from the data for estimation are distance, trav-

elling time of 96,000 (40 × 40 × 60) possible types of trip and fares of taxi and Uber

for these trips. For any given type of trip, the average trip distance and time of all

taxi trips of this type are calculated. Since the same data for Uber is not observed, I

assume same type of trip costs the same distance and time for Uber as taxi. Having the

trip distance and time, the average fares are calculated according to the pricing rule of

taxi ($2.5 + 2.5 ∗ distance + 0.8) and Uber ($2.55 + 0.35 ∗ time + 1.75 ∗ distance). The
fares are adjusted for airport trip and Uber’s $7 mimimum fare and surge multiplier.

Another variable analogous to the travelling time (in minutes) is the travelling periods.

The model does not distinguish drivers arriving at different minutes of a period. For

example, a 25 minutes trip takes 3 periods for drivers to complete.

Another set of variables are the travelling patterns of passengers. For any given

market, the distribution of destinations is obtained by calculating the proportions of

dropoffs. For example, when a passenger shows up at Time Square, the distribution

of destinations tells the probability that she will go to JFK airport or Brooklyn. This

variable is useful to compute expected profit of drivers in a market. The issue is

that only the transition probability of taxi passengers can be calculated according to

13In Chen et al. (2019), they calculate the transition matrix of Uber driver’s types including
evening driver, morning driver, late-night driver, weekend driver and infrequent driver. I calculate
the stationary distribution of the markov chain which has 10% morning drivers. Thus, I assume there
are 10% of 30,000 registered Uber drivers working during the day shift.

14Under this assumption that a driver only searches once in a 10-minute period, the model could
underestimate supply. For example, a driver could finish a trip and search for the next in 10 minutes.
The problem is negligible if intervals get thinner.
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observed taxis’ dropoffs. Considering the sorting of passengers between taxi and Uber,

the transition of taxi passengers is not necessarily the transition of population. The

difference between these two reflects the endogenous choice decisions of passengers

which is a good identification strategy. Thus, the transition of taxi passengers in 2010,

before the entry of Uber, is used as a proxy for the population transition in the sample

period. This proxy is valid if travellers with different travelling patterns to those in

2010 do not enter the market as Uber enters.

Finally, for each market, the average pickups of taxi and Uber over days are

calculated. I also construct market size as sum of taxi pickups, Uber pickups and

subway riders paying full fare with subway being the outside option of the discrete

choice model. Subway riders are assumed to include those who choose to request a ride

but fail to match and those who choose outside option at the beginning. All people are

implicitly assumed to leave the market at the end of period. In this way, the market

size may be underestimated by ignoring the people who wait until future periods to

leave. Another issue to notice is that the transition of taxi passengers in 2010 may

not represent the transition of population, considering that choosing subway is also an

endogenous outcome15.

5.2 Sample Overview

Table 1 shows monthly aggregate statistics of weekday pickups in November 2010 (22

days) and April 2016 (21 days). It summarizes the distribution of pickups by location,

shift and firm. In April 2016, taxis’ monthly aggregate pickups during day shifts are

3.7 million. Almost 93% of the total pickups are in Manhattan, 4.59% are in JFK

and Laguardia airports. My sample of 40 locations cover 99.38% of all taxis’ pickups

during day shifts. Outer boroughs has 2.24% pickups in total. The pickups of taxis

drop largely from 4.6 million to 3.7 million for monthly aggregate day shifts of 2010-11

and 2016-04. The distribution of taxi pickups also changes such that share of airport

increases from 3.42% to 4.59% and share of Manhattan drops from 93.67% to 93.17%.

Though the difference between 2010 and 2016 is not obvious. More changes of pick-up

distribution can be investigated if Manhattan is collapsed into smaller locations. This

change of pick-up distribution reflects change of taxis’ supply and demand distribution

after Uber’s entry. Table 1 also includes statistics on Uber’s pickups. Uber has different

15For example, if those choosing subway at the beginning are long-distance travellers, then the 2010
transition of taxi passengers underestimate the probability of long-distance trips in the population.
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Figure 3: 40 select markets and 79 spots to collect Uber surge multiplier

distribution in comparison to taxis that 59.5% pickups are in Manhattan. The share of

Uber’s pickups in outer boroughs is 36.58% quite larger than taxis. The share of Uber’s

pickups covered by my 40 locations is 77.63%. The variation of pickups between taxi

and Uber across markets helps to estimate the demand model. The complexity in the

model is that shares of pickups are not exactly shares of demand due to the matching

friction within a market.

Similar to demographics of a market, the exogenous travelling pattern of passen-

gers represents the demographics in the market. As mentioned above, I use taxis’ trip

records of 2010 to approximate exogenous travelling patterns of market population.

Taxis’ trip records of 2016 are endogenous outcome of passengers’ choices. Table 2

provides a rough overview of conditional distribution of dropoffs. The distribution is

calculated for day shift of weekdays. The first panel shows that 95.11% of pickups in

Manhattan are delivered within Manhattan and 3% to airports. Trips originating from

airports have 73.45% ending up in Manhattan and 6.37% of them are inter-airport.

Comparing 2010 and 2016, the dropoff distributions are slightly different that trips

originating from airports to Manhattan decrease from 73.45% to 71%. Table 2 only
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shows travelling patterns among three highly aggregate areas, Manhattan, Airport and

Other. More variations of travelling patterns can be discovered at the market level.

I use this difference as an identification strategy. The variation of travelling patterns

across market also helps identify price coefficient. For instance, given two markets

with the same market size and supply level, but with different travelling patterns of

population, a high price elasticity will generate quite different demand than a low price

elasticity.
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Table 1: Trip and share by firm, shift, and area

Firm&Shift Total Manhattan Airports Other 40 mkt
Yellow Taxi 2010.11(22)

Day shift 4,627,258 93.67% 3.42% 2.91% 98.93%
Night shift 5,139,146 92.91% 3.46% 3.63% 98.99%
Yellow Taxi 2016.04(21)

Day shift 3,730,326 93.17% 4.59% 2.24% 99.38%
Night shift 4,279,262 92.04% 4.94% 3.02% 99.27%
Uber 2016.04
Day shift 1,322,507 59.5% 3.92% 36.58% 77.63%
Night shift 1,989,054 64.15% 4.1% 31.75% 82.43%
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Table 2: Distribution of dropoffs in day shift by firm

Obs. Manhattan Airports Queen&Brooklyn not in 40
Yellow Taxi 2010.11(22)

Manhattan 4,334,266 95.11% 3% 0.98% 0.89%
Airports 158,410 73.45% 6.37% 8.15% 12.01%
Queen&Brooklyn 84,925 47.53% 4.43% 42.13% 5.88%
not in 40 49,657 41.50% 3.2% 9.04% 46.24%
Yellow Taxi 2016.04(21)

Manhattan 3,475,467 94% 3% 0.97% 1.17%
Airports 171,407 71% 3.2% 10.73% 14.69%
Queen&Brooklyn 60,274 42.6% 4.26% 44.89% 8.2%
not in 40 23,178 45% 3.9% 17.3% 32.8%
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Table 3 shows the statistics of the rest of variables in the sample. Given 40

locations and 60 periods, there are 2,400 markets. Uber’s surge multiplier varies from

1 to 1.37 at 10% and 90% quantiles. Market pickups range from 8.8 to 163 for taxis

and 8.33 to 34.95 for Uber. Taxi and Uber prices, distance, and time are calculated at

the origin-destination-period level. Uber’s fare on average is higher than taxi because

Uber charges both trip time and distance, there is a surge multiplier and Uber charges

a minimum fare of $7 which is higher than taxis for short trips.
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Table 3: Summary statistics of key variables

variable Obs mean 10%ile 90%ile S.D.
surge 2,400 1.14 1 1.37 0.18
taxi matches 2,400 72.28 8.80 163.02 57.34
Uber matches 2,400 20.37 8.33 34.95 10.25
taxi fare 96,000 17.68 7.92 28.4 10
Uber fare 96,000 22.39 9.12 37.95 12.48
trip distance 96,000 5.07 1.19 9.88 4.10
trip time 96,000 23.78 8.97 39.11 12.35
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In order to show the heterogeneity of conditional expected profits across markets,

I calculate the conditional expected profit for 2,400 markets. The distributions of ex-

pected profits for taxi and Uber are shown in figure 4. For taxis, the average expected

profit is 15.27 and it ranges from less than 10 dollors to almost 60 dollors. The distri-

bution for Uber has mean of 13.94 dollars without surge multiplier and 18.21 dollars

with surge multiplier. It implies that Uber driver’s expected profit is higher than taxi

in general. This high heterogeneity in profitability as shown in figure 4 illustrates the

incentive of drivers’ search decisions and why some markets are oversupplied. However,

the expected profit calculated here is static flow profit. Drivers’ search decisions are

made based on dynamic search values in the full model. Using the dynamic model

developed in the next section, search values can be computed with the estimates and

compared across markets.

6 Dynamic Search and Matching Model

The structural model fully extends the search and matching model discussed in section

3. Taxi and Uber drivers make dynamic spatial search decisions among I locations over

T periods in a day shift. Potential passengers make a static discrete choice decision

among Uber, taxi and subway. Drivers and passengers have perfect information about

the size of either side in a given market. When making supply/demand decision,

the agent accounts for both the indirect network effect from the other side of the

market and direct network effect from the same side. This supply sensitive demand

specification is one contribution of this paper to Buchholz (2022). The model allows two

types of frictions that prevent the market from clearing. First, within a market taxis

and passengers do not fully contact with each other due to coordination failure as in

Burdett, Shi and Wright (2001). However, perfect matching is assumed for Uber within

the market. Matching is perfect in airports for both taxis and Uber. In other words,

the matching process within a market is modelled with an explicit functional form.

Second, because of drivers’ endogenous search decisions there are locations exhibiting

excess supply along with other locations with excess demand. Both frictions result in

inefficient matching at the city aggregate level.

The timeline within a market is as follows. At the beginning of each period, part

of taxis and Uber cars will arrive at their destinations. If the car has a passenger on

board (employed), it arrives at the dropoff location. If the car is vacant (unemployed),
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Figure 4: Distribution of expected profits of taxi and Uber
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it arrives at the location based on the driver’s search decision in the last decision pe-

riod. Some of the cars either employed or unemployed are still on their way to the

destinations and will not necessarily arrive at a location in this period. All arriving

cars become supply to that market in this period. A passenger in this market has

perfect information about fares and rational beliefs on demand/supply, how likely he

will find a taxi or Uber car, and how long it takes to match16. Passengers make a static

discrete choice decision. Aggregating all passengers’ decisions returns demand for each

firm in this market. Then matches are made within each firm. Unmatched passen-

gers either due to excess demand or matching friction leave with the outside option

(subway). Employed drivers deliver passengers to their destinations and unemployed

drivers search next locations.

t0 t1 t2 t3 t4

timing of supply, demand and match of a market

- t0: Drivers arrive and become supply.

- t1: Passengers make discrete choices.

- t2: Drivers and passengers of the same firm are matched.

- t3: Passengers either unmatched or choosing subway in t1 leave with subway.

- t4: Employed drivers deliver passengers and unemployed drivers make search

decisions.

6.1 Passengers’ Choice Problem

In each market, a group of potential travellers make a discrete choice among taxis,

Uber and subway conditional on their exogenous destination with knowledge of prices,

product qualities, supply and demand. In this model, Uber is denoted as x (UberX),

16Uber’s supply can be perfectly learned by app which shows how many cars are around and how
long to wait. Taxis’ supply is hard to directly observe. However, the model characterizes demand and
supply only in equilibrium such that passengers are fully experienced and know how likely to get a
car without necessarily knowing how many cars nearby.
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taxi as y (yellow taxi) and outside option as o. The utility of a passenger c in location

i at period t choosing firm f = x, y, o to travel to j prior to matching process is:

U ij
cft,pre = G(τf (u

i
ft, v

i
ft), u

i
ft, v

i
ft, p

ij
ft, X

i
ft, ε

i
cft)

= τ iftU
ij
cft,post + (1− τ ift)U

ij
cot,post

(6.1)

where ui
ft is market demand for firm f , vift is firm f ’s supply and pijft is the price from

i to j. The function τ ift = τf (u
i
ft, v

i
ft) is the probability of being matched by choosing

firm f and is determined by the firm specific demand and supply level in the market.

The matching probability does not differ for different destinations j under the fact that

it is illegal for drivers to discriminate and decline a ride17. The probability τ(ui
ft, v

i
ft)

can be written as m(vift, u
i
ft)/u

i
ft with matching function m(vift, u

i
ft). The functional

form of m will be discussed later. In addition to effects of ui
ft, v

i
ft on the matching

probability, they could also affect the utility through classical direct network effects.

For example, the demand ui
ft in the market could affect passenger’s choice decision

as outcome of consumers learning from each other or congestion effect (Goolsbee and

Klenow (2002)). The supply vift affects choices through indirect network effect. Higher

vift could increase utility by decreasing waiting time. The utility of the outside option

is normalized to zeor, Ucot,post = 0, which implies that unmatched passengers end up

with zero utility by taking subway. Furthermore, U ij
cft,post is specified as log-linear such

that (6.1) can be rewritten as :

ln(U ij
cft,pre) = ln(τ ift) + ln(U ij

cft,post)

= θ1 ln(v
i
ft) + θ2 ln(u

i
ft) + dx + di + t+ ξift︸ ︷︷ ︸
δift

+αij ln(pijft) + εijcft (6.2)

Equation (6.2) is obtained by: (1), transforming τ ift as a linear combination of lnui
ft, ln v

i
ft;

(2), assuming ln(U ij
cft,post) is linear in lnui

ft, ln v
i
ft and other characteristics including

price pijft, Uber fixed effect dx, market fixed effect di, time fixed effect dt, unobserved

firm-market demand shock ξift and idiosyncratic consumer shock εijcft. The benefit of

17Uber drivers can decline a ride according to its destination which causes issues to the company.
Uber tries to use destination filter for drivers to add their order preference in order to decrease the
decline rate. In this paper, I do not model and allow such discrimination for Uber drivers.
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these assumptions is that all endogenous variables of the model ui
ft, v

i
ft are contained

in parameter δift such that demand is simple to solve. In other words, unobserved

endogenous demand u and supply v , which need to be solved through the structure,

are separated from estimating price coefficients18. The drawback of the log-linearity

assumption of τ is that coefficients θ in (6.2) measures the joint effect of vift or ui
ft

without distinguishing channels through matching probability or through classic net-

work effects (i.e. product variety, word-of-mouth.). The price coefficients αij depend

on travel distance and trip type which are parameterized as:

αij =
∑

k=1,2,3

αk1{distij ∈ Ik}+ α41{distij ∈ IJFK} (6.3)

where I1 is for trip distance less than 3 miles, I2 is for distance between 3 and 6 miles,

I3 is for distance greater than 6 miles and IJFK is trips between JFK airport and

Manhattan which charges flat rate.

Finally, I assume the utility of choosing outside option before the matching process

as:

ln(U ij
cot,pre) = δiot + εijc0t (6.4)

where δiot is normalized to zero. Since the subway fare is fixed for single trip regardless

of trip length, there is not price in 6.4.

I allow substitution between taxi and Uber by assuming a nested logit demand

model such that:

εijcft = ζ ijcgt + (1− β)νij
cft (6.5)

where ζ ijcgt is common to taxi and Uber which are categorized as one group, and sub-

way alone as the other group. Variable νij
cft is assumed to follow type I extreme value

distribution. The distribution of ζ ijcgt satisfies that εijcft is also an extreme value ran-

dom variable. The parameter β measures substitution between taxi and Uber. When

β = 0, it is equivalent to the simple logit demand model. Larger β implies stronger

substitution pattern between taxi and Uber. Then, the choice probability condition-

18In details, given values δift and αij , demands are fixed when I iteratively solve equilibrium supply.
If matching probabilities interacts with price, update of supply requires update of demand as well.
More details are in section 7.
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ing on route ij at time t becomes the product of choice probability within group and

probability across group. Within each group of taxi and Uber, the choice probability

is:

sijy|gt =
exp((δift + αij ln(pijft))/(1− β))

Dg

(6.6)

where:

Dg = exp((δiyt + αij ln(pijyt))/(1− β)) + exp((δixt + αij ln(pijxt))/(1− β)) (6.7)

The probability of choosing the group with taxi and Uber is:

sijgt =
D1−β

g

1 +D1−β
g

(6.8)

Then the choice probability becomes sijft = sijf |gt ∗ s
ij
gt.

In the traditional way, demand is estimated by matching choice probabilities to

the market shares obtained by dividing demand uij
ft by the number of people travelling

from i to j as Berry (1994). However, there are two obstacles to this. First, only

pickups mij
ft rather than demand uij

ft is observed. Thus, market share of demand can

not be calculated from the data. Second, even though assuming matches equal to

demand such that ui
ft = mi

ft, I cannot calculate u
ij
xt for any j of Uber without knowing

the destination distribution of Uber trips. In other words, equation (6.2) cannot be

directly estimated at the trip type level {i, j, t}.
Instead, I treat the choice probability as the model prediction for the conditional

market share on destination and aggregate sijft over destinations j to calculate the

unconditional market shares of firms at location i. The exogenous distribution of

passengers’ destination in a market {i, t} is denoted as Ai
t = {aijt }∀j where aijt is the

probability that a passenger from this market travels to j. The unconditional market

share predicted by the demand model is:

sift =
∑
j

aijt s
ij
ft (6.9)

If the market size is λi
t. Then the potential demand before the matching process is:
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ui
ft = λi

ts
i
ft (6.10)

In comparison to the exogenous distribution of travellers’ destinations Ai
t, the dropoffs

distribution of each firm Ãi
ft can be calculated as outcomes of passengers’ discrete choice

using Bayes’ rule. Thus, the model predicted firm-specific destination distribution

becomes:

ãijft =
aijt s

ij
ft

sift
(6.11)

where ãijft is firm specific and distinguished from aijt for the population.

To summarize the demand side, I assume passengers make demand decisions be-

fore the matching process but with rational belief of the demand and supply level as

proxy for matching probability, waiting time, and network effects. Given a set of de-

mand parameter values, the demand model can predict two main things. First, the

model predicts market shares sift and demand ui
ft. Second, it predicts the endogenous

distribution of firm’s dropoffs Ãf = {ãijft}. Though I do not directly observe demand

and supply in the data, the estimation section will discuss how to solve supply/demand

by fitting model predicted pickups to pickups observed in the data.

6.2 Drivers’ Choice Problem

At the end of each period, if the driver is employed, he will travel to the destination

requested by the passengers. Drivers cannot refuse to deliver a passenger once matched.

The probability of an employed car of firm f in location i at time t travelling to

destination j is ãijft which is obtained from equation (6.11). Search decisions are made

only by unmatched drivers at the end of each period.

If the driver is unmatched after the current period, he makes a decision on which

location to search for passengers in the next period. Drivers are identical within firm

and make individual decisions without coordination by the firm. Similar to passengers,

when drivers consider a location to search in the next period, they know the matching

probability, expected profit conditional on being matched and continuation value if not

matched in that location. In order to know the matching probability, drivers need to

have rational expectation of the demand and supply distribution across locations in
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the future. In equilibrium, a driver’s belief is consistent with the realized supply and

demand distributions.

At the end of a period, an unmatched driver of firm f in location i makes a search

decision after observing supply shocks {ϵj}∀j by choosing the location with maximum

value:

j∗ = argmax
j

{V j

ft+χij
t

− cijt + ρf (V
j

ft+χij
t

−min
l
{V l

ft+χil
t
})1χij

t =1︸ ︷︷ ︸
∆ij

ft

+ϵjf} (6.12)

where cijt is the cost of travelling from i to j calculated as cijt = 0.75 ∗ distanceijt . The
cost per mile is set to be 0.75 dollars. V j

ft+χij
t

is the driver’s ex-ante value of searching

location j in period t+ χij
t before the matching process in period t+ χij

t . The number

of periods travelling from i to j at t is χij
t which is time cost compared to cijt . Drivers

are assumed not to pick up passengers along his way to the search location. When the

driver chooses j which is far from i, he has to account for the loss of not searching

for passengers until the next χij
t periods. This time costs plays two important roles in

the model. First, it contributes to mismatches across locations due to mobility. For

example, suppose that location i has many vacant cars at the end of period t and

there are many passengers in another location j far from i in the next period. Drivers

cannot arrive at j in one period and result in excess demand in j and excess supply

in locations near i in t + 1. Second, I can study benefits of traffic improvement by

changing χij
t . Both cijt and χij

t are allowed to vary over periods t and route i, j. These

two variables can be directly calculated from the data. Finally, the parameters ρf

measure the extra benefits of searching locations that are close to current location i,

χij
t = 1. The difference of V j

ft+χij
t

minus the minimal values guarantee non-negative

benefit. The ex-ante value is defined as:

V j
ft = ϕj

ft

(∑
l

ãjlft(p
jl
ft − cjlt + V l

ft+χjl
t
)︸ ︷︷ ︸

V Sj
ft

)
+ (1− ϕj

ft)Eϵ

[
max

l
{∆jl

ft + ϵlf}
]

︸ ︷︷ ︸
V F j

ft

. (6.13)

In equation (6.13), ϕj
ft denotes the matching probability of drivers, ϕj

ft = mj
ft/v

j
ft. The

conditional expected value on being matched is denoted as V Sj
ft. Conditional on being
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matched, the expected profit is obtained by averaging over all possible destinations l

with weights ãjlft. Recall that ãjlft measures the firm-specific destination distribution

obtained in (6.11). It is important to note that the competition across firms affects

both ϕj
ft and ãjlft. However, the competition within a firm only affects ϕj

ft. The profit

conditional on trip jl includes the fare of the trip, cost of travelling, and continuation

value in location l after dropoff in t+ χjl
t period.

The second part of (6.13) is the continuation value of not being matched in j. The

interpretation of each variable is the same as (6.12). The conditional expected value

on not being matched is denoted as V F j
ft. Since drivers do not observe the realized

supply shocks ϵ’s until the end of period, the continuation value takes an expectation

over all possible supply shocks19. The supply shock ϵf follows i.i.d T1EV distribution

with scale parameter σf for each firm f such that the continuation value of being

unmatched has an explicit form:

Eε max
l

{∆jl
ft + ϵl} = σ log

(
Σl exp(∆

jl
ft/σf )

)
(6.14)

Given this feature of supply shock’s distribution, the deterministic transition prob-

ability of unemployed drivers of firm f in location i searching j in the next period

is:

πij
ft =

exp(∆ij
ft/σf )

Σl exp(∆il
ft/σf )

(6.15)

The scale parameter σf controls for incentives of drivers searching certain locations

captured by values ∆il
ft other than shocks ϵl. For example, large σf implies that drivers’

search decisions are largely driven by random supply shocks which leads to an even

allocation of drivers’ searches across locations.

Combining the transition of employed cars Ãf = {ãijft} calculated in (6.11) and

the policy function of unemployed cars Πf of equation (6.15) gives the law of motion

for the state transition. The state includes the status of all in-transit cars. The state

at the beginning of period t is a collection of {Si
t}∀i where Si

t is a collection of {ṽift,k}f,k
19It is important to note that equation 6.13 does not necessarily imply a positive correlation between

search value and matching probability of a market. This positive correlation is crucial for drivers to
prefer high demand, therefore providing high supply, given all else equal. The positive correlation
requires V Sj

ft > V F j
ft such that drivers prefer to be matched. While this inequality is not imposed

in the estimation, the result shows it is satisfied for all markets.
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with ṽift,k indicating the number of cars for firm f that will arrive at location i in the

next k periods. When k = 1, it implies that the supply at period t satisfies vift = ṽift,k=1.

At the end of each period, the transition of employed and unemployed cars update the

state such that:

ṽift+1,k = ṽift,k+1 + Σjm
j
ftã

ji
ft1χji

t =k + Σj(v
j
ft −mj

ft)π
ji
ft1χji

t =k,∀f, i, k (6.16)

To interpret (6.16), at beginning of period t+1, the number of firm f drivers that will

arrive at location i in k periods is composed of three parts: (1) those who will arrive at

i in k+1 periods at the beginning of period t; (2) those who pickup passengers at time

t and will arrive at i in k periods; (3) those unemployed drivers of period t who decide

to search location i next but will arrive in k periods. The next section introduces the

matching functions used to calculate matches mi
ft.

6.3 Matching Function

During the matching process in each period within a location, I use an explicit func-

tional form to predict the matching outcomes. Buchholz (2022) and Frechette et

al.(2019) assume a matching process with friction for taxis within a location. Frechette

et al.(2019) simulate the process of taxis searching over grids within a location for

passengers. Buchholz (2022) assumes an urn-ball random matching process and a cor-

responding explicit functional form is derived by Burdett, Shi and Wright (2001). I

use the same functional form as Buchholz (2022) and Burdett, Shi and Wright (2001)

with a modification to reflect heterogeneity in frictions across locations. This matching

process is only applied to taxis within locations outside the two airports. For taxi at

airports and Uber in all locations, there is perfect matching within the location.

The matching function for a taxi is obtained in the following way. Given taxis’

demand ui
yt and supply viyt in location i at period t, passengers are assumed to randomly

visit the taxis and of those visiting the same car only one can be successfully matched.

Other unmatched passengers will leave with the subway. I do not distinguish where

passengers and cars are located within the market such that all cars are identical to

the passengers. That means a passenger has equal probability of visiting any car.

Each car receives a passenger’s visit with probability 1/viyt. The probability of a taxi

not receiving a visit is (1 − 1/viyt)
ui
yt and the probability of a taxi being matched is
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1 − (1 − 1/viyt)
ui
yt . However, in locations with larger size of area, it is more difficult

to know the exact location of cars. Thus, I add an location-specific parameter γi such

that the probability of a car being matched becomes 1 − (1 − 1/(γiv
i
yt))

ui
yt . A higher

value of γi will decrease the probability of being matched. To be specific, I define

γi = γ1{i ∈ Manhattan}+ γ2{i ∈ Outer Borough}. Since taxis within i have the same

probability of being matched, the number of matches is:

m(ui
yt, v

i
yt) = viyt

(
1− (1− 1

γiviyt
)u

i
yt

)
≈ viyt(1− exp(−

ui
yt

γiviyt
))

(6.17)

Function (6.17) itself allows matching friction due to coordination failures such that

there is possibility that some cars receive no visits and some passengers are not matched.

As for Uber and aiports, the matching between drivers and passengers is assumed

to be frictionless. Uber use mobile technology to assign passengers and drivers into

a one-to-one pair without coordination failure as above. At the airports, drivers are

waiting in a queue to match passengers one by one without coordination failure as

well. The explicit functional form of perfect matching is mi
xt = min{ui

xt, v
i
xt}. However,

one drawback of this function is that given mi
xt ≈ vixt, the inverted demand satisfies

ui
xt = mi

xt ≈ vixt. In other words, this function does not capture excess demand.

Instead, I use a hyperbolic function to approximate perfect matching as shown in

figure 5. When the demand-to-supply ratio is greater than 1, the matching probability

of drivers approaches 1. When the ratio is less than 1, the matching probability

approaches the 45 degree line that is mi
xt ≈ ui

xt. In the case mi
xt ≈ vixt, it returns

an ui
xt greater than vixt as excess demand, though its value depends on the curvature

rather than any economic assumption. The explicit matching function form of figure

4 is obtained by solving mi
xt from (with small value of ϵ):

(
mi

xt

vixt
− 1)(

mi
xt

vixt
− ui

xt

vixt
) = ϵ (6.18)
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Figure 5: Hyperbolic function for perfect matching

6.4 Equilibrium

To solve the equilibrium of the model, a standard dynamic oligopoly model is inap-

propriate for this game due to the large number of drivers in the game. For example,

the number of possible states of allocating N drivers into I locations will be CI−1
N+I−1

which is large when N is large20. The model would be intractable and computationally

infeasible if drivers’ expected profits are taken over all possible market states. Instead,

I assume drivers make their search decision only based on their own state and knowl-

edge of the deterministic market evolution of demand and supply distributions. This

concept comes from oblivious equilibrium (Weintraub et al.(2008)) when players are

atomistic and individual decisions do not measurably impact the aggregate market

state. The key information about the market state is the distribution of supply and

destination distribution of in-transit cars. A driver’s own state is denoted as st which

includes his location at time t. The state of the city at time t is denoted as the collec-

tion {S i
t}i∈I . For any i, S i

t includes information about arrival of cars in next K periods,

hence collection {ṽift,k}f,k∈K . In OE, drivers make optimal search decisions according

to {st, {S i
t}∀i,t}. Drivers’ belief on the evolution of market state (i.e. supply distri-

20This number is obtained by counting the number of outcomes of putting N balls in I different

urns CI−1
N+I−1 =

(N + I − 1)!

(I − 1)!(N)!
allowing for empty urns.
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bution) is consistent with the realized state in equilibrium21. Given the deterministic

evolution of supplies, equilibrium demand can be calculated for each market from the

discrete choice model. The definition of equilibrium is summarized as follows:

Definition Equilibrium is a sequence of supply {vift}, beliefs of state transition {v̂ift,k},
policy function of unemployed cars {πij

ft}, transition of employed cars {ãijft} for ∀i, t, f
and given initial distribution of supply {vift=1} such that:

1. At the beginning of period t, passengers make discrete choice between firms based

on (6.1)-(6.8). Market demand is calculated from (6.10).

2. Matches are made between supply and demand for each firm within the market.

The matching process follows (6.17) for taxi and (6.18) for Uber and airport.

3. Transition of employed cars follows {ãijft} obtained by Bayes’ rule (6.11).

4. At the end of each period, unemployed drivers follow policy function πij
ft calcu-

lated in (6.15) based on beliefs of state transition {v̂ift+1,k}.

5. Realized state transition is obtained by combining both employed {ãijft} and un-

employed cars {πij
ft}. State of next period is updated to ṽift+1,k by (6.16).

6. At the beginning of next period, both employed and unemployed cars arrive and

form the new supply ṽift,k=1 = vift.

7. Drivers’ belief is consistent such that v̂ift+1,k = ṽift+1,k for all i, t, f, k

This model’s equilibrium is quite similar to Buchholz(2022) and still satisfies finite

horizon and finite action-space for existence of equilibrium.

7 Estimation

This section discusses the estimation process in detail. The key feature of estimation

is that supply vift and demand ui
ft in any market are not directly observed in the data.

Instead, the data only has observation on pickups mi
ft as the outcome of matching

process. Estimation of the model is searching for parameter values, equilibrium demand

21Another way to understand the OE in this model is that instead of knowing the evolution of the
supply distribution, drivers know the evolution of ex-ante search values {V i

ft}∀i,t. Knowing the supply
distribution or search values are interchangeable given one step calculation of (6.8).
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and supply, that generate matches and transition of cars that fit the data. The demand

side parameters include mean utility {δift}∀f,t,i, price coefficients {α1, α2, α3, α4}, and
substitution parameter β within group of taxi and Uber. The supply side parameters

include supply shock parameter σf , and bonus of searching nearby locations ρf . Finally,

there are parameters defining the matching function of taxis {γ1, γ2}. These parameters

are called structural parameters in the rest of this paper. Given estimates of the

structural parameters, equilibrium supply vf and demand uf , f = 1, 2 can be solved.

The next step is to estimate reduced form parameters θ in the mean utility δ. These

parameters are important since they help build the feedback loop between demand and

supply, the network effects. With θ ̸= 0, demand responds to the change of equilibrium

supply in the counterfactuals. Parameters in δ can be estimated using linear regression.

7.1 Estimating Structural Parameters

The estimation algorithm is diagrammed in figure 6. The first step is to estimate

demand and supply side parameters {δ, α, β,γ, σ, ρ}. Since the mean utilities δ has

a larger dimension than other parameters, I separate the structural parameters into

two subsets and estimate the subsets separately in two procedures. First, given the

parameter values of {α, β,γ, σ, ρ}, equilibrium demand and supply are solved such

that model generates the same pickups in markets as observed in the data. Second,

{α, β,γ, σ, ρ} are updated to minimize deviation of the model predicted distribution

of dropoffs for taxi trips to the distribution in data. The first procedure is similar to

Buchholz (2022) with an extended computation due to the introduction of the discrete

choice demand to the model. In Buchholz (2022), he searches for equilibrium demand

u which generates pickups in the sample. Instead of solving for demand u, I am

solving for mean utilities δ which have a one-to-one mapping to demand according

to BLP contraction mapping. Solving mean utilities is crucial to predict destinations

of passengers for each firm Ãf which forms objective function for optimization in the

second procedure.

In details, beginning in the upper left corner of figure 6. Given initial values of

{α, β,γ, σ, ρ}, initial values of mean utilities {δift}∀f,t,i are calculated by using pickups

as demands to calculate market shares for inverting. The procedure one to solve equi-

librium demand and supply is further broken into two loops. In the inner loop, given

the initial values of mean utilities and demands, I solve the corresponding equilibrium
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supplies {vift}∀f,t,i using backward induction. In detail, from the last period T , given

the demand distribution and zero search values V i
ft = 0,∀t > T , calculate continuation

values {V i
fT} according to (6.13) for an arbitrary supply distribution {vifT}22. For pe-

riod T−1, given the search values {V i
fT} and demands {ui

fT−1}, calculate search values

{V i
fT−1} and updated supplies of next period {vifT} for an arbitrary supply distribution

{vifT−1}. Repeat this process backward until period t = 1. The supply distribution in

period 1 is assumed to be proportional to pickups distribution of period 1. This process

only provides the starting values of supplies {vift}∀f,t,i, because the supplies and search

values are not consistent. Iterate this process updating supplies and search values from

t = 1 forward to t = T until equilibrium supplies are obtained23. The whole procedure

is summarized in algorithm 1 in the appendix. This procedure generates a mapping

from mean utilities to demands u = u(δ) and supplies denoted as v = Γ(δ). The

pickups are m = m(u(δ),Γ(δ)).

In order to fit pickups to the monthly average pickups in the data, denoted as m̄,

I update mean utilities in the outer loop. To be specific, given the mean utilities δk

and solved equilibrium supply vk of the kth iteration, I invert the matching function

using pickups in the data to obtain the updated mean utilities such that δk+1 =

u−1(m−1(m̄,Γ(δk)). Plug the updated δk+1 into the inner loop to update equilibrium

supplies vk+1 = Γ(δk+1) until the model predicted matches fit the data. The outer

loop is summarized in algorithm 2 in the appendix.

The second procedure, in the bottom right corner of figure 6, estimates {α, β,γ, σ, ρ}.
Given the estimated mean utilities conditional on the parameter values of {α, β,γ, σ, ρ},
the transition matrix of taxi passengers {Ãi

yt} can be calculated for all the markets in

order to match the observations in the data. For each period, the transition proba-

bilities form a 40 by 40 matrix and there are totally 1600 × 60 data point to match.

Instead of matching the probabilities point-to-point to the data, I aggregate the pickups

and dropoffs over locations and periods and recalculate the transition probabilities in

larger areas over 20 half hours. This process applies to both data and model generated

transitions. Then, the sum of weighted squared differences between model generated

transition of taxi passengers and that of the data can be calculated as the objective

22The day ends for taxi drivers in period T due to shifts. However, Uber drivers have no shifts.
Uber drivers may continue to work after period T with positive search values. In this estimation, I
assume search values are equal over locations for t > T and normalized to 0. Normalization won’t
affect transition probabilities since constants are cancelled out by equation 6.15.

23This process does not satisfy contraction mapping. In order to find the fixed point solution, I
applies iterative method of average damping.
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function of nonlinear least squares estimation. Estimators are defined as 7.1 :

{α̂, σ̂, γ̂, ρ̂, β̂} = argmin
α,σ,γ,ρ,β

Σt,i

(
m̄i

yt(
¯̃Aij
yt − Ãij

yt(α, σ, γ, ρ, β))
)2

(7.1)

7.2 Estimating Parameters in Mean Utility

In the second step, given the estimates of {Θ,m, δ, u, v} with Θ = {α, β,γ, σ, ρ} in

step 1, variables in mean utility equation that are not directly obtained in data such

as market demand and supply in equation (6.2) can be calculated. In the specification

of mean utility, the coefficient on demand measures direct network effect and coeffi-

cient on supply measures indirect network effect. An OLS regression of equation (6.2)

has endogeneity problem since demand and supply are all correlated with unobserved

demand shock ξift. For supply vift, I use arrival of employed cars of firm f at the

beginning of period as instrument. The argument is that these cars visit location i

because of their passengers’ destination. It is reasonable to assume that demand shock

of current period is not correlated with the destination of passengers picked up from

other locations in previous periods. One exception to this assumption could be that

passengers visit location i and leave i in the same period after arrivals. This instrument

is correlated with supply as it constitutes supply together with arrival of unemployed

cars. To solve the endogenous problem of demand, two instruments are used including

market size λi
t and arrival of opponent’s cars. Market size is exogenous and correlated

with demand as in (6.10). Arrivals of opponent’s cars are uncorrelated with demand

shocks following the same argument above. It correlates with demand through the

discrete choices of passengers.

To summarize, given demand parameter values and market size, market demand

can be calculated. Then, given supply side parameter values, solve drivers’ optimal

decisions and calculate supply using backward induction in the inner loop of procedure

one. In the outer loop of procedure one, the matching function can generate pickups

given supply and demand to fit pickups in the data. The model is estimated in proce-

dure two such that deviation of model generated transitions of employed taxis to the

transitions in the data is minimized. Finally, mean utility equation is estimated using

IV regression.
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Figure 6: Overview of the estimation process

7.3 Identification

The parameters are identified by variation of pickups, prices, the travelling pattern of

population and the pattern of taxi passengers over markets in the data. Given a set

of nonlinear parameter values, mean utilities {δift} are identified by the variation of

pickups across firms and markets. The mapping from mean utilities to pickups follows

algorithm 1&2 in which I firstly map mean utilities to demands and corresponding dy-

namic supply distributions followed by calculating matches given supply and demand.

Consider two identical markets (i.e. same market size, travelling pattern and prices)

with different pickups m̄1 > m̄2. In a static model, market 1 with higher pickups

implies a higher demand and supply than market 2 and therefore δ1 > δ2. However,

in a dynamic model, the corresponding supplies for given mean utilities are more com-

plicated than in a static model. In the dynamic model, supply may not fully respond

to demand variation across locations due to mobility restriction of cars conditional on

their locations in the previous period. However, given the one-to-one mapping from

inter-period demands to dynamic supplies, the dynamic pickup patterns in the data

help to identify mean utilities.
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Identification of the price coefficient α comes from variation in population travel-

ling patterns over markets. For example, two markets with same mean utility δift = δjft
and market size λi

t but with different destination distributions of passengers Ai
ft ̸= Aj

ft

will have different demands ui
ft ̸= uj

ft. The demand level relative to subway riderships

also helps identifying price coefficient. As for supply shock parameter σ, it controls for

transition of unemployed drivers. Given the search values over locations V i
ft,∀i, high

σ implies equal probability of search in each location i.

Identification of the matching function parameters γ is less intuitive. They are

crucial to connect the mapping from δ to pickups. Different γ do not affect equilibrium

supply as much as equilibrium demand. The reason is that drivers’ matching probabil-

ity depends directly on successful pickups mi
ft rather than potential demand ui

ft. Given

the pickups generated by model equal those of data in estimation, the matching func-

tion parameter γ does not change the probability much. However, given a fixed supply

level, inefficient matching of γ affects estimated mean utilities δ. For example, given

fixed pickup and supply, a large γ (less efficient) generates high potential demand and

corresponding high δ. The mean utilities further affect destinations of passengers in

equation (6.11) and drivers’ profits. Since ex-ante search values V i
ft depend not only on

the matching probability but also on profits, equilibrium supply also reacts to changes

of γ. Thus, in order to identify the {δift} with restriction to γ, I use the dropoffs of

taxis in the data such that model predicted dropoffs of taxis match the data. The

reason is that different magnitudes of δ, which is shifted by γ, not only affect market

shares relative to outside option but also affect the distribution of firm-specific dropoffs

as in (6.11). High δ could dominate price effects on sorting passengers between taxi

and Uber. As a result, it makes the distribution of taxi passengers’ dropoffs close to

the distribution of population24. Hence, I use taxis’ dropoffs to identify the matching

function parameters.

24For a given market i, t, the mean utility δift is common for all destinations j. It shifts the
conditional shares on routes uniformly. In the extreme case of taxis’ mean utility large enough,
destination of taxis’ passengers is exactly same to population’s.
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8 Results

8.1 Estimates of Structural Parameters

The estimation results are listed in table 4. The estimates of price coefficients α =

{α̂k}k=1,2,3,4 for different trip distances are specified in (6.3). The price coefficient

for trip distance less than 3 miles is α̂1 = −0.81 and becomes less sensitive for long

distance trip α̂3 = −0.41. The estimate α̂4 = −0.26 is for trips between JFK and

Manhattan which charges flat rate $52 by taxi. The estimate of another demand

parameter β ∈ [0, 1] in nested logit demand defined in (6.5) is equal to 0.38. When

β → 1, demand shocks for taxi and Uber are highly correlated and when β → 0 they

are independent as in a simple logit model. The estimate of β indicates the substitution

between taxi and Uber but the substitution is not quite strong. In the demand side,

there are a large set of mean utilities {δift}∀f,t,i to estimate and the statistics for taxi

and Uber are listed below the demand parameters. The mean of taxis’ {δiyt} is 1.21

with maximum value at 5.05 and minimum value at −1.79. Uber’s mean utilities {δixt}
are less than taxi. The difference in mean utility can be inferred from the different

market shares. If the supply is positively correlated with the mean utility, it may

indicate existence of network effects between demand and supply as specified in (6.2).

There are two sets of parameters from the supply side. First, the estimates of

supply shocks’ scales σf , f = y, x for taxi and Uber are 7.67 and 12.65. These two

parameters affect the transition probability of unemployed cars in (6.15). Larger σf

implies less effect of profit difference across locations on transition probability πij
ft.

Conversely, a smaller σf will enlarge the difference in profits among locations such

that drivers have a higher likelihood of searching high profit location. The estimate

means that taxi drivers have greater incentive to search locations with higher search

values than Uber drivers. Furthermore, controlling for profit difference across locations,

these two estimates imply a higher chance that taxi drivers will overcrowd high profit

locations and leave low profit locations undersupplied. In other word, σf enhances

the role of profit gap caused by fixed price on matching frictions. The second set of

supply parameters are ρf which measure the incentive of unmatched drivers to search

locations nearby in the next period. This extra bonus from current location i to search

location j is measured proportionally to V j

ft+χij
t

− minl{V l
ft+χil

t
} if χij

t = 1 (see 6.12).

The estimate for taxi is 0.38 and for Uber is 0.27. Higher ρ̂y means that taxi drivers

have a greater incentive to search locations nearby than to visit a location far away.
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The bottom of table 4 reports the estimates for random matching function 6.17.

The γi = γ1{i ∈ Manhattan}+γ2{i ∈ Outer Borough} measures within-market match-

ing efficiency for taxis. I distinguish the efficiency in Manhattan and outer Boroughs.

A high value of γ means inefficient matching within the market. For instance, given

a fixed number of supply and demand, higher γ generates less successful matches.

The estimates of this parameter in Manhattan area is 1.11 in comparison to 3.67 in

Outer Boroughs indicating that the within-market matching is less efficient in Outer

Boroughs.
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Table 4: Estimates of structural parameters

parameter estimates s.e.
demand side parameters
α̂1 -0.81 (0.042)**
α̂2 -0.58 (0.029)**
α̂3 -0.41 (0.040)**
α̂4 -0.26 (0.031)**

β̂ 0.38 (0.026)**
mean utilities mean min/max

δ̂iyt 1.21 -1.79/5.05

δ̂ixt 0.30 -1.62/3.94
supply side parameters
σ̂y 7.67 (0.245)**
σ̂x 12.65 (0.513)**
ρ̂y 0.38 (0.023)**
ρ̂x 0.27 (0.025)**
matching function parameters
γ̂1 1.11 (0.015)**
γ̂2 3.67 (0.345)**
** 1-percent or * 5-percent level significant
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Along with the parameter estimates, summary statistics of several variables across

the 2400 location-time markets are reported in table 5 for Uber and Taxi. The vari-

ables are the equilibrium values of demand, supply, matching probability, search values

and difference in conditional expected values on being matched and unmatched. The

mean of taxis’ demand is 118.14 with 10th percentile at 19.63 and 90th at 268.19.

In comparison, Uber’s potential demand is much less, on average 20.92. The average

supply of taxis across markets is 174.21 with percentiles 41.56 to 313.05. The average

supply of Uber is 34.46, not much less than taxi considering the ratio of cars. The

matching probabilities of taxi and Uber drivers are also different. Uber has a higher

matching probability than taxis for two reasons. First, Uber has a smaller number of

cars than taxi which indicates less cannibalization. Second, Uber has perfect matching

as opposed to taxi’s random matching within market which, ceteris paribus, increases

the driver’s matching probability. The ex-ante search value for taxi is, on average,

98.31 compared to 128.78 of Uber. The 10th and 90th percentile of search values for

taxi is 21.97 and 174.92, the dispersion of which is mainly driven by the time of day

in comparison to the market location. In general, Uber drivers have higher expected

profit than taxis. This high profitability of Uber could be the result of surge pricing,

matching efficiency and less competition within firm. The search value is a proxy for

the revenue in dollars of an individual driver in a day shift. To interpret these numbers,

one needs to realize that search values decrease over time because of the finite time

horizon in dynamic game. For example, an Uber driver expects to earn a total revenue

above 233.39 dollars at the beginning of the day. Finally, the table shows the difference

between continuation value conditioning on being matched and not being matched. As

mentioned in the model, the difference is not restricted but calculated and a positive

sign implies positive correlation between search value and matching probability such

that demand positively affects supply given all else equal.
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Table 5: Statistics in equilibrium

mean 10th/90th percentile
demand
ui
yt 118.14 19.63/268.19

ui
xt 20.92 8.47/35.92

supply
viyt 174.21 41.56/313.05
vixt 34.46 18.72/53.08
matching probability
ϕi
yt 0.37 0.15/0.57

ϕi
xt 0.59 0.31/0.88

search value
V i
yt 98.31 21.97/174.92

V i
xt 128.78 34.29/233.39

difference in conditional expected values
V Si

yt − V F i
yt 15.10 7.13/18.82

V Si
xt − V F i

xt 15.56 10.25/21.96
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I demonstrate the heterogeneous continuation values ∆ij
ft across destination j for

any origin location i in figure 7. The horizontal axis is time periods and vertical

axis is the difference. Each line represents a location i over t about the variation of

continuation values {∆ij
ft}j over j. The differences of ∆

ij
ft directly determine the search

choices of drivers based on equation (6.15). I use two standard deviations, 2∗stdj{∆ij
ft},

to represent the differences in incentives of drivers to search among locations. A small

value of deviation means drivers have equal incentive to search any of the 40 locations.

For example, at the beginning of the day, an unemployed taxi driver in a location faces

a heterogeneous continuation value across j′s with two standard deviations equal to 7.

At the end of the day shift, since all continuation values go to zero, the lines converge

to the horizontal axis. The variation of continuation values is stable across time for

taxi, while it increases at 8:30 a.m.(t = 15) for Uber and become stable afterwards.

It means that during 8:30 a.m., no matter where the unemployed Uber drivers are

located, some locations are much more profitable to search than some other locations.
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Figure 7: Heterogeneous expected continuation values conditional on being unmatched
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8.2 Estimates of Reduced form parameters

Given previous results, I estimate a linear regression of mean utilities {δift} on variables

in equation (6.2). The coefficients of interest are θ1 and θ2, the coefficient on supply

and demand in the utility function. The supply coefficient θ1 measures indirect network

effect from the other side of the market. It is the net effect of supply on the utility of

choosing the product including, but not limited to, the impact via matching probability

and waiting time. Likewise, the coefficient on demand θ2 captures the net effect of

demand on utility. One possible channel is that the demand decreases the likelihood of

being matched and therefore negatively affects utility. Conversely, it can also positively

affect utility of choices via consumers learning from each other and herding. The cause

of this joint effect, as discussed in section 6.1, is approximation of matching probability

and log linear assumption of ex-post utility, see 6.2.

I use market size, arrival of drivers from the same and opponent firm as instruments

for lnu, ln v. The OLS and 2SLS regression results are shown in table 6. In the

regression, I add an interaction term between Uber dummy and logarithm of demand

and supply levels. The estimates show positive effects of both demand and supply on

utility. Moreover, the effects are larger for utility of choosing taxis than for Uber. The

positive sign of supply coefficient means that higher supply level increases the demand.

Since demand will positively affect supply in the model, these two effects form the

positive feedback loop between drivers and passengers. It is a little surprised that

the coefficient on demand is also positive. Demand is expected to negatively affect

matching probability after controlling for supply due to congestion effect. One way

to explain this positive sign is that there exists strong positive direct network effect

among passengers which offset the congestion effect on probability. For example, if

my friend uses taxi (or Uber), I would also like to choose taxi (or Uber). Comparing

coefficients on demand between OLS and 2SLSIV shows that OLS overestimates θ2

due to endogeneity as expected. However, the IV regression has a higher estimate of

θ1 than OLS. One possible explanation is that it is easy to understand how demand

correlates with demand shock controlling for supply but hard to understand how supply

correlates with demand shock controlling for demand. These estimates are used in the

counterfactual to compare the scenarios with or without network effect by allowing

the mean utility to react to changes of demand and supply or not. This will generate

different equilibria in order to understand the consequences of ignoring network effects.
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Table 6: Estimates of network effects

Dependent variable δift
OLS 2SLSIV

ln v 0.054 0.496
(0.019)** (0.07)**

lnu 0.53 0.249
(0.021)** (0.06)**

ln v × dx -0.053 -0.224
(0.039) (0.11)*

lnu× dx -0.014 -0.086
(0.038) (0.08)

Uber dummy dx 0.19 1.21
(0.054)** (0.18)**

constant -2.23 -3.71
location fixed effects YES YES
time fixed effects YES YES
** 1-percent or * 5-percent level significant
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8.3 Benchmark Welfare

In this section, I discuss and analyze the matching efficiency of this industry given

the model’s implied demand, supply and matches. The key factors of interest are the

two types of frictions in the model, within-location friction (type I) and cross-location

friction (type II). Within-location friction is measured by the mismatches between

drivers and passengers of the same firm within the market. This type of friction is

mainly driven by the matching function (6.17). Cross-location mismatches occur in

the same period, because some locations have more drivers than demand whereas other

locations have more demand than supply. Excess supply in a location can be counted

as max{vift−ui
ft, 0} and likewise excess demand is counted as max{ui

ft−vift, 0}. These
expressions do not account for the mismatches due to random matching within market

so that I can distinguish these two types. In period t, the city level aggregate demand

is Σiu
i
ft and aggregate supply is Σiv

i
ft. The maximum aggregate matches that can

be made without type I friction are Σimin{ui
ft, v

i
ft}. Given the aggregate demand

and supply level fixed, the efficient matches should be min{Σiu
i
ft,Σiv

i
ft} from the city

aggregate perspective25. The difference is:

min{Σiu
i
ft,Σiv

i
ft} − Σi min{ui

ft, v
i
ft}

= min{Σi max{0, ui
ft − vift}︸ ︷︷ ︸

aggregate excess demand

,Σimax{vift − ui
ft, 0}︸ ︷︷ ︸

aggregate excess supply

} (8.1)

Expression 8.1 counts the minimum of aggregate excess supply and demand. Un-

like type I friction, type II friction is mainly driven by the endogenous decisions of

drivers and passengers. There are three limitations for 8.1 to be a good measure of

friction. First, it only counts the static mismatches in a given period. Less efficient

matches in the current period could result in better matches in the next period con-

sidering the mobility of drivers across locations. Second, it counts the trips equally,

but passengers and trips are not identical. I improve this measure by calculating trips’

values in dollars. Third, this measure does not necessarily correlate with the number

of matches, especially when excess supply is greater than excess demand. For example,

an equilibrium may have both high type II friction and large number of matches.

The welfare statistics are listed in table 7. The first panel displays the type I

25Lagos (2000) treats this expression as efficient aggregate matches and an aggregate matching
function generating fewer matches has friction. However, in his paper, the demand is exogenous and
there is no demand-supply feedback loop.
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friction in quantity and dollars. For example, there are a total of 95,547 within-location

mismatches for all markets in a representative day shift. These mismatches are worth

1.3 million trip fares for taxi compared to total profit of 2.5 million. In other words,

without coordination failure within market, drivers could make 50% more profits. The

type I friction for Uber is negligible26. The type II friction as measured by 8.1 are

shown in second panel. There are a total of 14,738 cross-location mismatches for taxis

which are worth $203,530 trip fares. Uber has a fewer cross-location mismatches than

taxi, 1,850.

26Though I assume perfect matching for Uber within market, the hyperbolic function still generates
slightly more friction than perfect matching.
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Table 7: Baseline welfare statistics

within-location mismatches
Taxi 95,547

$1,286,400
Uber 635

$10,517
cross-location mismatches
Taxi 14,738

$203,530
Uber 1,850

$34,450
Profits and welfare
Taxi profit $ 2,510,400
Uber profit $ 779,380
Consumer welfare 505,210
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The dynamics of frictions over time are provided in figure 8. It shows how the

aggregate frictions and matches over locations for any given period evolve. Taxi pickups

increase sharply after the first hour in the morning and decrease until 11 a.m. (t = 30 ).

Uber’s aggregate pickups are flatter than taxis which only increases slightly during the

morning rush hours. Notably, the cross-location mismatches reach the highest daily

level during the morning rush hours when taxi drivers are more likely to overcrowd

some locations and leave others undersupplied. In the appendix, I show figures for

demand, supply and pickups over time of day for several locations.

To summarize, I estimate a dynamic search and matching model of taxi & Uber

drivers and passengers. The results show that: (1), there exists a feedback loop (in-

direct network effect) between demand and supply in a market and direct network

effect within the same side; (2), when drivers make search decisions, they face a very

heterogeneous search values among locations; (3), drivers are more likely to oversupply

high profitability locations and to leave other locations undersupplied such that cross

location mismatches exist; (4), the low matching probability due to oversupply coun-

ters the high conditional expected continuation value such that ex-ante search values

V i
ft are less variable across locations.

Figure 8: Aggregate frictions and matches of taxis& Uber over time
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9 Counterfactuals

This paper characterize the “mis-allocation” of drivers through across-market friction.

In order to understand the factors that affect the matching efficiency and social welfare,

I simulate three counterfactuals. First, is a government proposal to cap the growth

of Uber and its effects. The second, asks to what extent traffic conditions matter for

matching efficiency. Third, analyzes how Uber surge pricing affects the efficiency of

matching.

The simulation process that applies to all counterfactual scenarios is in the ap-

pendix. The difference between with or without network effect is whether or not to

update mean utility δf for the new equilibrium demand and supply. Not updating

mean utility means that passengers will not respond to the change of demand and

supply levels so that the feedback loop between two sides is shut down. This case is

similar Buchholz (2022) which does not incorporate network effects. With network

effects, the mean utilities adjust to any change of supply and demand. Furthermore,

the supply will update to the change of demand and so forth until a new equilibrium

is reached. As most structural models do with counterfactuals, I assume the demand

shocks ξ̂f are fixed.

9.1 Regulating Uber’s supply

In this counterfactual, I study the proposed regulatory policy of the NYC government

regulating Uber. During the sample period of April 2016, Uber is growing rapidly

and the total Uber licensed drivers outnumber the taxis27. There are two complaints

about the growth of Uber. First, people argue that it contributes to traffic congestion.

Second, it causes the taxis’ profits to drop28. In 2015, the city mayor proposed to

solve these problems by capping the growth of Uber, but it was dropped and not

implemented after a protracted battle with the company. In early 2018, city mayor

thought of regulating Uber again and a law was passed that the TLC will not issue

new licenses for FHVs for one year29. To simulate the impact of this policy, I decrease

27There are 26, 000 Uber’s licensed vehicles in comparison to 13, 000 taxi medallions. In the mean-
time, the number of Uber’s affiliated vehicles is growing at a monthly rate of 3%.

28For example, the auction price of an independent unrestricted medallion dropped from $ 0.7
million in 2011 to $0.5 million in 2016.

29https://www.timeout.com/newyork/news/the-city-council-finally-remembered-that-uber-needs-
to-be-regulated-in-nyc-030218
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the assumed total number of Uber vehicles by 30% and simulate the new equilibria

with and without network effect. The results are in table 8.

First, compare the third (without network effect) and the second (benchmark)

column. After dropping 30% of Uber vehicles, the total supply of Uber cars decrease

by 17,377 (21%). The total number of taxis’ supply does not change . The reason is

that demand for taxis in this case does not change due to fixed mean utility and price.

Given the unchanged distribution of demand for taxis, the equilibrium supply of taxis

does not change as well. Similarly, demand for Uber is also unchanged. But due to the

decline of Uber’s supply, total pickups of Uber decrease by 3,387 (7.1%). As for the

frictions, I compare Uber’s type II friction. Uber’s cross-location mismatches increases

by 3,020 which is worth $ 56,702 fares. The increase is because of unchanged Uber

demand and the decreased supply of Uber. However, demand of passengers should

respond to change of supply as it affects the matching probability or waiting time.

The importance of accounting for network effect is reflected in this example. Finally,

taxis are not affected in this case without network effect. The total profit of Uber

decrease by $ 63,250 (8.11%).

Next, compare the last column that allows network effect with the previous two

columns. Total supply of taxis does not change much but its demand increases by 3,790

(1.34%). However, the decline of Uber’s demand is 6,353 (12.64%) which is greater than

increased taxi’s demand. The total pickups of taxi increase by 1,660 and pickups of

Uber decrease by 7,004 more than without network effect. The difference is because

the utility of choosing Uber declines due to less supply of Uber. As for frictions, taxi’s

type I friction increases a bit due to increased demand for taxi. Moreover, its type II

friction also increases by 857 (5.81%). Though the difference is small, it reflects the

direction that taxis’ matching friction may go if there is less competition from Uber.

Uber’s cross-location mismatches is smaller than without network effect as expected,

but it is still greater than the benchmark level by 684 (36.97%). In terms of profits,

taxis make $ 34,300 more money in a day shift after regulating Uber compared to $

119,320 profit loss of Uber. Finally, passengers are worse off by $ 98,829 after this

regulation30.

30Consumer welfare is evaluated by inclusive value of log utility. The welfare loss in dollars is
computed by compensating variation.
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Table 8: Restricting Uber’s supply

supply, demand, match Benchmark change w/o network change with network
Taxi supply (Σi,tv

i
yt) 418,100 20(0.01%) -490(-0.12%)

Uber supply (Σi,tv
i
xt) 82,707 -17,377(-21.01%) -18,085(-21.86%)

Taxi demand (Σi,tu
i
yt) 283,510 -480(-0.17%) 3,790(1.34%)

Uber demand (Σi,tu
i
xt) 50,224 -42(-0.08%) -6,353(-12.64%)

Taxi pickups (Σi,tm
i
yt) 173,230 -160(-0.09%) 1,660(0.96%)

Uber pickups (Σi,tm
i
xt) 47,738 -3,387(-7.09%) -7,004(-14.67%)

two type friction
Taxi type I friction 95,547 49(0.05%) 1,265(1.32%)

$ 1,286,400 $ 700(0.05%) $ 18,400(1.43%)
Uber type I friction 635 65(10.23%) -33(-5.19%)

$ 10,517 $ 1,153(10.96%) $ -523(-4.97%)
Taxi type II friction 14,738 -371(-2.52%) 857(5.81%)

$ 203,530 $ -4,910(-2.41%) $ 12,220(6%)
Uber type II friction 1,850 3,020(163.24%) 684(36.97%)

$ 34,450 $56,702(164.59%) $ 12,314(35.74%)
welfare
Taxi profit $2,510,400 $-2,600(-0.10%) $34,300(1.36%)
Uber profit $779,350 $-63,250(-8.11%) $-119,320(-15.31%)
Consumer welfare 505,210 0 -3,670(-0.72%)
∆ Consumer welfare NA $0 $ -98,829
∆ Social welfare NA $-65,850 $-183,849

Note: Type I friction is Σi,t min{ui
ft, v

i
ft} − m̄i

ft.
Type II friction is Σt min{Σi max{ui

ft − vift, 0},Σi max{vift − ui
ft, 0}}.
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9.2 Improving traffic conditions

The second counterfactual simulates equilibrium after improving traffic conditions.

As government blames Uber for traffic congestion, fluid traffic movement is welfare

improving for all the citizens. Instead of regulating the number of cars on the street,

government can also improve the infrastructure as the McKinsey report on assessing

Uber impact suggests. Since I do not model the relationship between traffic conditions

and Uber cars, I only simulate the traffic improvement as an exogenous shock. To do

so, I replace the trip time {χij
t }∀i,j,t calculated using 2016 data by the corresponding

time in 2010. Figure 9 displays the comparison of trip time in 2010 and 2016. The

difference in distributions implies worse traffic condition in 2016. For example, the

median of trip time in 2010 is 18.73 minutes. The median of trip time in 2016 is

22.62 minutes. The new equilibrium suggests the importance of traffic conditions on

matching efficiency. The new equilibrium and welfare in comparison to the benchmark

is provided in table 9.

Figure 9: Comparison of traffic speed in 2010 and 2016

First, compare the efficiency change without network effects. Aggregate demands

for taxi and Uber do not change in the new equilibrium. Daily aggregate supply of both

taxi and Uber increase. For example, total supply/searches of taxi drivers increase by
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68,610 (16.41%) and Uber’s increase by 10,963 (13.25%). As consequence, the total

pickups of taxis increase by 8,110 (4.68%) and of Uber increase by 971 (2.03%). The two

types of friction also change. Both frictions for taxi decrease, especially for the cross-

location mismatches. The total number of type II friction of taxis decreases by 6,142

(41.67%) which is worth $ 80,620 trip fares. As for Uber, the within-location friction

is negligible due to perfect matching assumption. Uber’s cross-location mismatches

also decrease by 1,014 and the loss of fares decrease by $ 18,618. The total revenue of

taxis increases by $ 107,400 (4.28%) and of Uber increases by $ 17,830 (2.29%). The

welfare gain to consumers measured by compensating variation (CV) is zero because

inclusive value of their expected utility prior to matching does not change without

network effect.

The last column of table 9 shows the equilibrium with network effect which al-

lows demand to respond to the change of supply. The total supply of taxi increases

more than without the network effect. Uber’s supply also increases compared to the

benchmark, however, less than without network effect. There could be two possible

explanations. One reason is that the choice decisions of passengers change after re-

sponding to the network effect. As consequence, not only the market share/demand

changes, but also the destinations of Uber’s passengers change such that Uber’s pas-

sengers tend to travel longer distance. The other reason is that the search values of

Uber change due to the demand change and Uber drivers are more likely to search

a location far away. Both reasons make Uber drivers spend more time on travelling

than searching. Taxi’s demand increases more than without network effect but Uber’s

demand declines. One reason is that taxis have stronger network effect than Uber and

increased mean utility of choosing taxis is higher than Uber. As a result, taxi’s pickups

increase by 18,470 (10.66%) which is larger than the 4.68% without network effect. It

is interesting that Uber’s pickups decreases in the new equilibrium rather than increase

in the previous case which implies that we could even have opposite conclusions with

or without network effect. As for frictions, the type I friction of taxis increases both in

quantity and dollars. It is due to both increased demand and supply of taxi, and the

random matching assumption. The type II friction of taxis also decreases compared

to the benchmark but is slightly larger than the case without the network effect. The

same finding applies to Uber’s type II friction. This finding implies that network effects

make the matching across locations less efficient which coincides with the calibration

in section 3..

59



Table 9: Traffic improvement

supply, demand, match Benchmark change w/o network change with network
Taxi supply (Σi,tv

i
yt) 418,100 68,610(16.41%) 80,820(19.33%)

Uber supply (Σi,tv
i
xt) 82,707 10,963(13.25%) 9,150(11.06%)

Taxi demand (Σi,tu
i
yt) 283,510 -480(-0.17%) 16,610(5.86%)

Uber demand (Σi,tu
i
xt) 50,224 -42(-0.08%) -1,833(-3.65%)

Taxi pickups (Σi,tm
i
yt) 173,230 8,110(4.68%) 18,470(10.66%)

Uber pickups (Σi,tm
i
xt) 47,738 971(2.03%) -1,057(-2.21%)

two type friction
Taxi type I friction 95,547 -2,457(-2.57%) 3,376(3.53%)

$ 1,286,400 $ -33,500(-2.60%) $ 41,800(3.25%)
Uber type I friction 635 0 -24(3.78%)

$ 10,517 $ 14(0.13%) $-111(-1.05%)
Taxi type II friction 14,738 -6,142(-41.67%) -5,237(-35.53%)

$ 203,530 $-80,620(-39.61%) $ -68,610(-33.71%)
Uber type II friction 1,850 -1,014(-54.81%) -753(-40.70%)

$ 34,450 $-18,618(-54.04%) $ -12,643(-36.69%)
welfare
Taxi profit $2,510,400 $107,400(4.28%) $231,100(9.21%)
Uber profit $779,350 $17,830(2.29%) $5,110(0.65%)
Consumer welfare 505,210 0 30,860(6.11%)
∆Consumer welfare NA $0 $ 748,900
∆Social welfare NA $ 125,230 $ 985,110
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9.3 Eliminating surge multiplier

The final counterfactual studies whether Uber’s surge pricing improves matching effi-

ciency across locations. Unlike fixed fare of taxis, Uber uses surge multiplier to effi-

ciently adjust drivers’ search incentives among locations. When some locations have

higher demand than supply, Uber tends to charge a higher price than regular one to

motivate more drivers to come. This higher price is the product of a surge multiplier

and regular price. To investigate the effect of flexible pricing of Uber on matching

efficiency, I eliminate Uber’s surge multiplier such that all Uber’s trips are calculated

using the normal pricing structure. By comparing the new equilibrium with the bench-

mark, it helps to understand the effect of flexible pricing on matching efficiency. The

results are listed in table 10.

Column 2 and 3 compare the new equilibrium without network effects to the base-

line. After the decline of Uber’s prices, the aggregate searches of drivers do not change

much for both taxi and Uber. Demand is more sensitive to the lower price such that

Uber’s demand increases by 8,150 (16.23%). Taxis’ total demand decreases by 5,510

(1.94%) due to the price competition. As a result of demand change, taxis’ pickups

also decline slightly by 1.39% whereas Uber’s pickups increase by 9.11%. Compar-

ing the frictions in the second panel, the type I friction of taxi decreases due to the

decreased demand and supply. Most interesting findings are the cross-location mis-

matches. Taxi’s cross-location mismatches decrease by 1,894 (12.85%) whereas Uber’s

mismatches increase by 2,811 (152%) trips. The increased type II friction of Uber is

worth $ 30,455 fares. The decreased cross-location mismatches of taxis may result from

the competition effect, since Uber’s product becomes more competitive with the lower

price. Without the help of surge pricing, Uber’s mis-allocation of drivers makes its

matching less efficient. Then, taxi drivers search less efficiently due to less pressure

from Uber’s competition. As for the last panel, taxis’ profits decrease due to price

competition by $ 30,300. Though Uber’s demand increases due to lower price, its total

profit decreases by $ 57,990. The welfare gain of passengers is $ 120,400.

The last column reports equilibrium with network effects such that demand and

supply change the mean utilities of passengers. I find that both supply and demand

of taxi and Uber change more than without the network effect in the same direction.

For example, the total supply of taxis decreases by 3,240 which is more than previous

without network effects. The demand of Uber increases by 23.58% compared to the

16.23% without network effects. This finding reflects the positive feedback loop in
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the two sided market. After Uber’s price decreases, demand for Uber increases which

further increases utility of choosing Uber through direct network effect. As a result,

the total pickups of taxis decrease more and Uber’s pickups increase more than without

network effect. To conclude, existence of network effects exaggerates the effect of price

drop on market share in this counterfactual. As for frictions, taxis’ within-location

friction decreases by 2.57%. This is mainly due to the decreased demand and supply of

taxis. Cross-location mismatches of taxis and Uber have opposite results as well. Taxi’s

type II friction decreases by 2,573(17.46%) and Uber’s increases by 3,152. Finally, in

the last panel, taxis’ profits decreases slightly more than the case without network

effect. Uber drivers make more money after allowing network effect because it make

more demand for Uber to compensate the price drop. However, consumer welfare gain

decreases from $ 120,400 to $ 96,977 due to network effects.
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Table 10: Eliminating surge multiplier

supply, demand, match Benchmark w/o network with network
Taxi supply (Σi,tv

i
yt) 418,100 -870(-0.21%) -3,240(-0.77%)

Uber supply (Σi,tv
i
xt) 82,707 668(0.81%) 1,512(1.83%)

Taxi demand (Σi,tu
i
yt) 283,510 -5,510(-1.94%) -9,780(-3.45%)

Uber demand (Σi,tu
i
xt) 50,224 8,150(16.23%) 11,841(23.58%)

Taxi pickups (Σi,tm
i
yt) 173,230 -2,420(-1.39%) -4,760(-2.74%)

Uber pickups (Σi,tm
i
xt) 47,738 4,350(9.11%) 6,633(13.89%)

two type friction
Taxi type I friction 95,547 -1,204(-1.26%) -2,455(-2.57%)

$ 1,286,400 $ -14,100(-1.09%) $ -29,600(-2.30%)
Uber type I friction 635 123(19.37%) 151(23.78%)

$ 10,517 $ -1(-0.01%) $ 287(2.73%)
Taxi type II friction 14,738 -1,894(-12.85%) -2,573(-17.46%)

$ 203,530 $-25,410(-12.48%) $ -34,070(-16.74%)
Uber type II friction 1,850 2,811(151.95%) 3,152(170.38%)

$ 34,450 $ 30,455(88.40%) $ 32,153(93.33%)
welfare
Taxi profit $2,510,400 $-30,300(-1.21%) $-57,500(-2.29%)
Uber profit $779,350 $-57,990(-7.44%) $-35,020(-4.49%)
Consumer welfare 505,210 5,930(1.17%) 4,810(0.95%)
∆Consumer welfare NA $120,400 $ 96,977
∆Social welfare NA $32,110 $4,457
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10 Conclusion

This paper studies the factors that determine supply and demand, and their effects on

matching friction with an application to taxi and Uber drivers searching for passengers

in New York City. In this industry, due to the fixed pricing structure of taxi, the

market is not cleared in prices, leaving mismatches across locations. There are also

non-price factors that could affect matching efficiency. The mostly important two are

network effects and competition. To analyze their impacts, I model Uber and taxi

drivers’ dynamic search decisions among 40 defined locations in NYC and passengers’

discrete choice decisions. I estimate the model using data of a representative weekday

shift in April 2016.

Estimates of the model show the existence of network effects and a positive feed-

back loop between drivers and passengers. There is also a positive externality among

passengers. How network effects affect spatial mismatches of drivers and passengers

are studied in three counterfactuals. The first is a regulatory policy capping Uber’s

number of vehicles. I reduces the number of Uber cars by 30% and find that taxis’

pickups increase by 1,660, far less than the decrease of Uber’s pickups 7,004. Interest-

ingly, due to less competition, taxis’ mismatches increases. Uber’s matching efficiency

decreases due to the smaller number of cars. The second studies to what extent traffic

conditions matter for matching efficiency by using the travel time in 2010. In the new

equilibrium with better traffic, both Uber and taxis have fewer mismatches, 35.53%

and 40,7% reduction, respectively. Their profits also increase. However, without con-

sidering network effect, Uber’s pickups are predicted to increase whereas it decreases

with network effects. Finally, I study whether Uber’s surge pricing improves matching

efficiency. By eliminating the surge pricing, there is a significant increase in Uber’s

mismatches. However, lower price without surge pricing results in more pickups for

Uber, 6,633 trips. All counterfactuals show different results either in magnitude or sign

depending on whether the network effects are recognized in the analysis. Sometimes

the magnitude of change won’t be large but sometimes they are. Moreover, the sign

of change is flipped with network effects. Thus, ignoring network effects will lead to

incorrect conclusions or inferences.
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Appendix

The inner and outer loops of estimating equilibrium demand and supply, which

corresponds to the small triangle in the upper right of figure 6, are described in the

algorithm 1 and 2 below.

Algorithm 1 Solve Equilibrium Supply

1: Set parameter values for {σ, α, γ, ρ, β} and {δift}∀f,i,t
2: Guess supply {vifT}f,i, calculate {ui

fT}f,i, {V i
fT}f,i

3: for τ = T − 1 to 1
4: Guess {vifτ}f,i, reset state of in-transit cars {ṽift,k}t>τ = 0
5: for t = τ to t = T
6: Compute market share {sift} and demand {ui

ft}
7: Compute matches mi

ft = m(ui
ft, v

i
ft)

8: Compute transition of employed cars {ãift}
9: Compute transition policy of unemployed cars {πi

ft}
10: Update {ṽift+1,k} based on {πi

ft}, {ãift}
11: Update value {V i

ft} of current period
12: Update supply of next period vift+1 = ṽift+1,k=1

13: end
14:end
15:Fix τ = 1
16: Iterate step 5 to 13
17: Stop until step 11 and 12 won’t update under certain tolerance level.
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Algorithm 2 Solve Fixed Points of Mean Utility

1: Guess demand {ui
ft}0 based on observed pickups {m̄i

ft}
2: Calculate market share sift and guess initial {δift}0
3: Iterate BLP contraction mapping to solve for {δift}1 to match market shares
4: Plug {δift}1 into algorithm 1 to solve for {vift}
5: Invert matching function with {vift, m̄i

ft} for {ui
ft}

6: a: vift > m̄i
ft, update ui

ft

7: b: vift ≤ m̄i
ft, don’t update ui

ft

8: Given updated {ui
ft}1, solve BLP contraction mapping for {δift}2 and {Ãi

yt}
9: a: Σfu

i
ft < λi

t, update δift
10: b: Σfu

i
ft ≥ λi

t, set u
i
xt = ui

ftm̄
i
xt/Σfu

i
ft and ui

yt = λi
t − ui

xt, update δift
11: Repeat step 4 to 10

12: Until |δk+1 − δk| < ϵ

13: Report {Ãi
yt}, transition of employed taxis
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The steps of solving new equilibria with and without network effects in the coun-

terfactuals are described in algorithms below.

Simulation Algorithm Without Network Effects

1: Fix parameter values as estimates {σ̂, α̂, γ̂, ρ̂, β̂, θ̂} and δ̂

2: Given {δ̂, α̂, β̂}, calculate new eq demand u′ and transition of passengers Ãf

3: Run the iteration process in Algorithm 1 to solve for new eq supplies v′

Simulation Algorithm With Network Effects

1: Fix parameter values as estimates {σ̂, α̂, γ̂, ρ̂, β̂, θ̂}
2: Set initial guess of δ0 = δ̂
3: Iterate from k = 0

3: Given {δk, α̂, β̂}, calculate new eq demand uk and transition of passengers Ãk
f

4: Run the iteration process in Algorithm 1 to solve for vk
f

5: Plug {vk
f ,u

k
f , ξ̂, θ̂} in to mean utility 6.2 and update δk+1

6: Stop until ∥δk+1 − δk∥ < ϵ
7: New equilibrium v∗

f ,u
∗
f

71



Figures below show demand, supply and pickups of taxi and Uber over time for

several locations in figure 10- 13. One interesting finding by comparing Queens or

Brooklyn with central Manhattan areas is that there are excess taxis’ supply in Man-

hattan almost all the time during the daytime. In comparison, Queens and Brooklyn

are more likely to have excess demand. Especially during the morning hours from 7

am to 9 am. It is harder for passengers to hail a taxi. Another finding is that Uber

serves outer boroughs more intensively than taxis. For example, the number of Uber

drivers in selected location of Brooklyn is close to that in Times Square.

Figure 10: Demand, supply and matches in a location of Queens
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Figure 11: Demand, supply and matches in a location of Brooklyn

Figure 12: Demand, supply and matches in Times Square
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Figure 13: Demand, supply and matches in Financial District
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Equilibrium Solution of the Exposition Model

3.2 Solution to Network Effects Calibration

Since we only consider equilibrium with excess supply in island 1 and excess de-

mand in island 2, we have m∗
y1 = u∗

y1 and m∗
y2 = u∗

y2. By plugging these equations in

to (E1), we have v∗y1 =
py1
py2

u∗
y1.

Substitute v∗y1 =
py1
py2

u∗
y1 in to the first equation in (3.1), we obtain the expression

of solution u∗
y1 as function of exgenous variables, which is u∗

y1 =
dy1

1− α− β
py1
py2

.

Since the total number of drivers is Ny, it comes immediately that v∗y2 = Ny − v∗y1.

Substitute v∗y2 = Ny − v∗y1 into the second equation in (3.1), we can solve u∗
y2 =

β

1− α
v∗y2 +

d∗y2
1− α

. One can simply solve all the endogenous variables as function of

exogenous variables by replacing u∗
y1 =

dy1

1− α− β
py1
py2

.

3.3 Solution to Competition Calibration

We consider the equilibrium with excess supply of Uber in both islands. Therefore,

we have m∗
x1 = u∗

x1 and m∗
x2 = u∗

x2. By substituting these equations in to (E1), we

obtain
u∗
x1

v∗x1
px1 =

u∗
x2

v∗x2
px2. Since we assume px1 = px2, it turns out

u∗
x1

v∗x1
=

u∗
x2

v∗x2
≡ w∗.

Replace u∗
xi in (3.1) for Uber, we have:

((1− α)w∗ − β)v∗xi = θv∗yi + dxi,∀i = 1, 2 (1)

Summing equation (1) over i, we have:

((1− α)w∗ − β)Nx = θNy + dx1 + dx2,∀i = 1, 2 (2)

Next, we solve equilibrium demand and supply for yellow taxis. Given the equilibrium

with excess supply of taxi in island 1 and excess demand in island 2, we still have

m∗
y1 = u∗

y1,m
∗
y2 = v∗y2 and v∗y1 =

py1
py2

u∗
y1. Replace v∗y1 in equation (3.1), we obtain:

(1− α− β
py1
py2

)u∗
y1 = θv∗x1 + dy1 → u∗

y1 =
θv∗x1 + dy1

1− α− β
py1
py2

which is equivalent to (3.4).

Equation (3.5) can be obtained simply from (3.1) when i=2. To solve endogenous

variables as function of exogenous ones, one can use (3.4) and (3.7) to solve either v∗y1

or v∗x1 and plug the solution into (3.4)-(3.7).
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